

PROJECT CEER-TCB18

Pan-European cost-efficiency benchmark for electricity transmission system operators MAIN REPORT

Disclaimer

This is the final report of a CEER project on cost efficiency benchmarking that involves data collection, validation and calculation of various efficiency indicators. Respecting the confidentiality of the submitted data and the prerogatives of each national regulatory authority to use or not the information produced in review of network tariffs or other monitoring, the report does not contain details for individual operators, nor comments or recommendations concerning the application of the results in regulation. In addition to this open report, each regulator and participating operator has also received a more detailed confidential analysis.

Pan-European Cost Efficiency Benchmark for Electricity Transmission System Operators Final report. Open. Project no: 370 / CEER-TCB18

Release date: 2019-07-17

Executive Summary

The Transmission Cost Benchmarking project 2018 (TCB18) is an initiative by the Council of European Energy Regulators (CEER) to initiate a stable and regular process for performance assessment of energy transmission system operators. The project covers both electricity and gas transmission and involves in total 46 operators from 16 countries in Europe. The project is the most ambitious regulatory benchmarking project documented so far, mobilizing national regulatory authorities (NRA), transmission system operators (TSO) and consultants in a joint effort to develop robust and comprehensive data and models. The project lasted from December 2017 to June 2019, involving five workshops and three successive stages of project setup, data collection and validation, followed by calculation and reporting.

Comparability

The primary challenge of any benchmarking is assuring comparability among observations emanating from operators with differences in organization, task scope and asset base. This challenge is addressed by (i) limiting the scope to comparable activities in transport and capacity provision, (ii) controlling to systematic differences in labor costs, (iii) standardizing the asset life-times and capital costs to equal conditions, (iv) excluding country-specific cost factors (land, taxes), (v) controlling for joint assets and cost-sharing, (vi) adjusting capital costs for inflation effects.

Reliability

The benchmarking is performed on NRA collected data, subject to a multi-stage data quality assurance process and using state-of-the art benchmarking methods such as Data Envelopment Analysis (DEA). The reliability and replicability of DEA results are immediate, since the method does not depend on any *ad hoc* parameters, but relies on the input data and linear programming. The environmental, economic and technical parameters and indices used have been collected from public sources based on clear techno-economic arguments. The sensitivity analysis shows that the results are robust to these latter assumptions. Globally the reliability of the method and the results is very good.

Verifiability

The quality of the data material in the project is a key determinant of the precision of the project results. The project addresses this criterion (i) by issuing and validating data collection guides and templates to avoid the use of incomparable data sources at an early stage, (ii) by defining a clear NRA validating procedure, (iii) by organizing a cross-validation process for both technical and economic data through the consultant, (iv) by fully disclosing all processed data to each respective operator for control and confirmation to avoid misinterpretations and error, (v) by organizing interactive workshops to enable questions, and (vi) by providing online support on the project platform for submitting operators and NRAs.

Confidentiality

The data involved in the study go deeply into the operational efficiency of the participating operators. As this data are of crucial economic importance to the enterprises, the integrity and confidentiality of the data are taken seriously in the project both from structural, procedural and organizational viewpoints. Although transparency has advantages in data validation and interpretation of the results, the current project setup respects the concerns of operators not wishing to reveal the individual information or scores.

Approach

The methodological approach in the study has been to proceed independently with the estimation of a proxy for the diversified asset base of the operators, called the normalized grid or NormGrid. This system, constructed by international transmission system engineers based on transmission cost functions, provides a totex-relevant proxy for comparing operators in terms of size. The resulting metric was then tested by another team on the actual data, confirming the strong explicative value of the NormGrid. Quality provision was subject to a specific survey to assess potential indicators, but the results from this survey could not be directly applied to the model.

Environmental factors

The engineering team continued to develop testable hypothesis for the cost impact of various relevant environmental factors. After collection of such data, partially using a very detailed GIS-supported data set for each TSO, an analysis was made to enhance the NormGrid parameter with an environmental correction multiplier to adjust for heterogenous operating conditions. Other parameters were tested and included if not covered by correlation to the already incorporated factors or the grid in itself (NormGrid).

Activity model

Based on a multi-dimension performance model, additional parameters were selected based on their statistical and techno-economic significance to form a final model with one input, totex and three output parameters; NormGrid corrected for landuse (area type), total transformer power, and the line length corrected for angular and steel towers. The final model caters for all three performance categories; transportation work, capacity provision and customer service.

Benchmarking results

The model shows that the electricity transmission system operators had a mean cost efficiency of 89.8% for 2017, with four frontier outlier operators and four best-practice peers. The results confirm earlier findings both in terms of level and distribution of scores, meaning that there likely is an efficiency potential corresponding to about 10% of total comparable expenditure. The result corrects for salary differences, heterogenous opening balances, unequal length of investment streams and overhead cost allocation rules.

Robustness

The results show a stable rank order with respect to the parameter interest rate and very low sensitivity in general to changes in the NormGrid system weights. The outlier identification procedure limits also the impact of operators with very specific cost structures that might be non-replicable for non-peers.

Table of Contents

Ι.	PROJECT OBJECTIVES AND ORGANIZATION	I
	MAIN OBJECTIVES	1
	PROJECT MANAGEMENT	1
	PROJECT DELIVERABLES	1
	READING GUIDE	2
1.5	APPENDIX	2
2.	BENCHMARKING PROCESS	3
2.1	PROJECT PHASES	3
2.2	PROJECT TEAM ASSIGNMENTS	4
	PROJECT DOCUMENTATION	4
2.4	WORKSHOPS	5
2.5	PROJECT PARTICIPANTS	5
3.	DATA COLLECTION	6
3.1	PROCEDURE (GUIDE AND COLLECTION)	6
3.2	DATA QUALITY STRATEGY	6
3.3	ENVIRONMENTAL DATA	8
3.4	SPECIAL CONDITIONS	9
4.	METHODOLOGY	14
4.1	BACKGROUND	14
4.2	STEPS IN A BENCHMARKING STUDY	14
4.3	ACTIVITY ANALYSIS AND SCOPE	15
4.4	GRID TRANSMISSION ACTIVITIES	15
4.5	T TRANSPORT	16
4.6	M GRID MAINTENANCE	16
4.7	P GRID PLANNING	16
4.8	I INDIRECT SUPPORT	17
4.9	S SYSTEM OPERATIONS	17
4.10	X MARKET FACILITATION	17
4.11	TO OFFSHORE TRANSPORT	18
4.12	O OTHER ACTIVITIES	18
4.13	SCOPE	18
4.14	COST DEFINITIONS AND STANDARDIZATION	19
4.15	BENCHMARKED OPEX	19
4.16	BENCHMARKED CAPEX	22
	BENCHMARKED TOTEX	25
	NORMALIZED GRID	25
<i>4</i> 19	MODEL SPECIFICATION	27

BENCHMARKING METHODS	29
FRONTIER OUTLIER ANALYSIS	30
ALLOCATION KEY FOR INDIRECT COSTS	31
BENCHMARKING RESULTS	32
MODEL SPECIFICATION	32
SUMMARY STATISTICS	34
ASSUMPTIONS APPLIED IN RUNS	36
EFFICIENCY SCORES	36
ROBUSTNESS ANALYSIS	38
QUALITY PROVISION	42
SURVEY	42
ANALYSIS	43
CONCLUSIONS	44
SUMMARY AND DISCUSSION	45
MAIN FINDINGS	45
PLAUSIBILITY OF THE RESULTS	45
COMPARISON WITH E3GRID	46
LIMITATIONS	46
FUTURE PLANS FOR BENCHMARKING	47
REFERENCES	48
	FRONTIER OUTLIER ANALYSIS ALLOCATION KEY FOR INDIRECT COSTS BENCHMARKING RESULTS MODEL SPECIFICATION SUMMARY STATISTICS ASSUMPTIONS APPLIED IN RUNS EFFICIENCY SCORES ROBUSTNESS ANALYSIS QUALITY PROVISION SURVEY ANALYSIS CONCLUSIONS SUMMARY AND DISCUSSION MAIN FINDINGS PLAUSIBILITY OF THE RESULTS COMPARISON WITH E3GRID LIMITATIONS FUTURE PLANS FOR BENCHMARKING

1. Project objectives and organization

In this Chapter we state the project objectives, the organization and the report outline.

1.1 Main objectives

- 1.01 The main objective with the CEER TSO Cost efficiency Benchmark 2018 (project TCB18) is to produce a robust and methodologically sound platform for deriving cost efficiency estimates for transmission system operators, under process and data quality requirements allowing use of the results to inform regulatory oversight of the operators. In the project, best practice TSOs (forming the so-called frontier) are identified and related to other TSOs in a pan-European and regulatory context. Ultimately this is the purpose of TCB18.
- 1.02 TCB18 succeeds the E3GRID project in 2012/2013 and the E2GAS study of 2015/2016, combining in a single project a benchmark of gas TSOs and electricity TSOs. This report deals with the electricity study. The gas part is described in a separate report.

1.2 Project management

- 1.03 TCB18 is owned and initiated for regulatory purposes by CEER, the Counsil of European Energy Regulators. CEER has hired Sumicsid for advise and to perform parts of the benchmark study, notably analysis, modelling, and reporting.
- 1.04 Daily management of TCB18 is done by a project steering group (PSG) that consisted of representatives from ACM (Dutch NRA), BNetzA (German NRA), CNMC (Spanish NRA), NVE (Norwegian NRA), PUC (Latvian NRA), and Sumicsid (consultant). The PSG held regular meetings about every two weeks plus ad hoc meetings to discuss and decide about issues.

1.3 Project deliverables

1.05 The project produced two deliverables to document the results and the process:

1.06 Final reports:

This document for electricity constitutes the final report documenting the process, model, methods, data requests, parameters, calculations and average results, including sensitivity analysis and robustness analysis. The report is intended for open publication and does not contain any data or results that could be linked to individual participants.

1.07 TSO-specific reports:

Clear and informative report on all used data, parameters and calculations leading to individual results, decomposed as useful for the understanding. The report only contains data, results and analyses pertaining to a single TSO. The confidential report was uploaded in an electronic version to each authorized NRA on the platform.

1.4 Reading guide

1.08 Chapter 2 provides a short summary of the project organization, followed by Chapter 3 outlining the data collection and validation process. Chapter 4 covers the full methodology for the activity analysis, the standardization of operating and capital expenditure, the benchmarking method, the model specification and the outlier detection. Chapter 5 reports on the results for the final model, including a robustness analysis. The results of the complementary survey on service quality are summarized in Chapter 6. Chapter 7 closes the study with a discussion of main findings, some perspectives and future work.

1.5 Appendix

- 1.09 The Appendix is released as a separate file. It contains the following documentation, not covered in the report but essential for the comprehension of the project:
 - A. Electricity asset reporting guide, 2018-03-08
 - B. Financial reporting guide, 2018-03-08
 - C. Special conditions reporting guide, 2018-09-13
 - D. Method to treat upgrading, refurbishing and rehabilitation of assets, 2017-12-19
 - E. Modelling opening balances and missing initial investments, 2018-01-11
 - F. Norm Grid Development Technical Report, 2019-02-27 V1.3

2. Benchmarking process

In this Chapter the benchmarking process is summarized, including list of participants and the different points of interaction in the project.

2.1 Project phases

2.01 The project is organized into three phases as in Figure 2-1, described below. The time axis in this picture refers to the original plan. Dates mentioned below Figure 2-1 are realized dates.

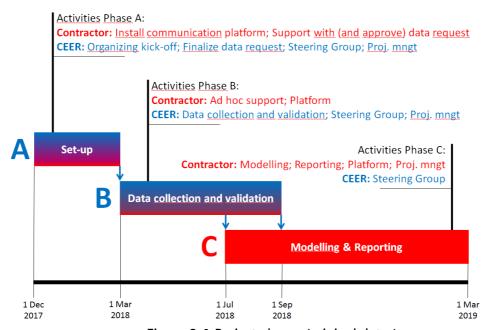


Figure 2-1 Project phases (original dates)

Phase A

- 2.02 The initial phase is devoted to the launch, detailed planning and preparation for the operational part of the project in the next two phases.
- 2.03 Duration: 01/12/2017 28/02/2018
- 2.04 Key events:
 - 1) Project management setup
 - 2) Kick off workshop W1
 - 3) Project platform setup
 - 4) Revision and final release of data definition guides and Excel templates

Phase B

2.05 The data collection and validation phase is mainly in the hands of CEER and the NRAs, the consultant act as support and coordinator of the project platform.

2.06 Duration: 01/03/2018 – 30/08/2018

2.07 Key events:

- 1) Data collection
- 2) Data validation (NRA)
- 3) Cross validation of data (consultant)
- 4) Workshop W2 on data collection
- 5) Collection of environmental public parameters (consultant)

Phase C

- 2.08 The last project phase contains the model specification, verification, calculations, outlier identification, sensitivity analyses, documentation, presentation and report editing for CEER and the individual NRAs.
- 2.09 Duration: 01/09/2018 30/06/2019
- 2.10 Key events:
 - 1) NormGrid development
 - 2) Workshop W3 on NormGrid models and environmental factors
 - 3) Model specification
 - 4) Workshop W4 on model specification
 - 5) Release of individual TSO-specific data sheets pre-run
 - 6) Efficiency analyses
 - 7) Robustness analyses
 - 8) Workshop W5 on final results
 - 9) Editing of final report
 - 10) Editing of individual TSO-specific score sheet

2.2 Project Team assignments

2.11 The consultant is organized in four teams (CENTRAL, ECON, TECH-GAS, TECH-ELEC). The Sumicsid project members include Prof.dr. AGRELL and Prof. dr. BOGETOFT, with a long experience in methodological and applied benchmarking of energy networks, as well as Dr. Ir DEUSE, international expert engineer in electricity, respectively, all with extensive experience in transmission system analysis and benchmarking.

2.3 Project documentation

- 2.12 The documentation for the project, data calls, instructions and workshop material as well as methodological notes, were published at a project platform only. Likewise, all data and validation material were up- and downloaded from the project platform, avoiding versioning and security problems associated with email. The platform contained private and public areas for all, electricity and gas transmission operators, respectively.
- 2.13 The project initially aimed at transparency for, at least, aggregate data and results. However, no consensus could be reached among the TSO participants to share data generally in the project. In consequence, all detailed data and results were disclosed uniquely to the participating TSO and their respective NRA.

2.4 Workshops

2.14 Since for an important part the project is focused at TSO-NRA interaction, a number of workshops were organized (cf. Table 2-1). All project participants, TSOs and NRAs, were invited to the workshops, from which all documentation and minutes were published on the project platform.

Table 2-1 Project workshops ELEC

Workshop	Phase	Date
W1 Kickoff	Α	2018-01-15
W2 Method, data validation	В	2018-04-25
W3 Normgrid and environment	С	2018-10-10
W4 Model specification	С	2018-11-27
W5 Final results	С	2019-04-04

2.5 Project participants

2.15 The following TSOs and NRAs took part in the project (cf. Table 2-2):

Table 2-2 TCB18 participants ELEC.

TSO	Country	NRA
ADMIE	GR	RAE
APG	ΑT	E-Control
AST	LV	PUC
Elering	EE	ECA
ELES	SI	EA
Energinet.dk	DK	DUR
Fingrid	FI	EV
Litgrid	LT	NCC
NGET	UK	OFGEM
REE	ES	CNMC
REN	PT	ERSE
SHETL	UK	OFGEM
SP	UK	OFGEM
Statnett	NO	NVE
Svenska Kraftnät	SE	El
TenneT	NL	ACM
TenneT DE	DE	BnetzA

Data collection

In this chapter, the data collection and the data validation process are discussed.

3.1 Procedure (guide and collection)

- 3.01 For TCB18 data definition guides, one for asset data (Appendix A) and one for financial data (Appendix B), were developed in a separate project that preceded TCB18. That preceding project started in February 2017 and ended about six weeks after the kick off of TCB18 (so there was actually a slight overlap). Part of that were two workshops, one in May 2017 (W0a) and one in October 2017 (W0b).
- TSOs received the final data definition guides (Appendix A and B) early March 2018 and were asked to deliver data in the middle of May 2018. In that period CEER organized the second TCB18 workshop (W2), dedicated to data collection. That workshop was meant to discuss the progress of data collection by TSOs and to identify and solve issues with it. NRAs had the time to validate TSO data until the end of June. After the second TCB18 workshop CEER decided to extend "softly" the deadline for delivering data by TSOs to the end of June. By "softly" was meant that TSOs were asked to agree with their NRAs a time path for delivering data in such a way that by the end of June the data was delivered by the TSOs and validated by the NRAs. Eventually, most data was delivered and validated nationally on time. However, not for all TSOs, imposing some stress on subsequent stages of TCB18.

3.2 Data quality strategy

3.03 For TCB18 CEER developed and laid down (workshop W2) a clear strategy for safeguarding the quality of the benchmark data that enters the benchmark, see Figure 3-1 below.

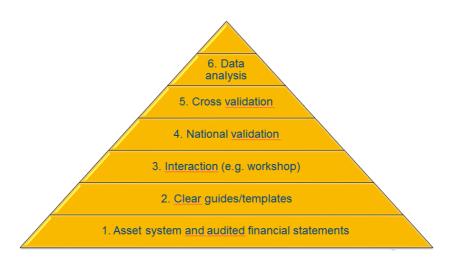


Figure 3-1 Data quality strategy.

3.04 The data quality strategy consists of six layers:

- The first- or base-layer is the asset system and audited financial statements of TSOs.
 The data quality strategy is founded on the principal that TSOs have a proper asset system and audited financial statements.
- 2) The second layer consists of reporting guides and templates, see Paragraph 3.1. For a year CEER, TSOs, and the consultant have interactively worked on clear data definitions to translate the base-layer (asset system and audited financial statements) into benchmark data.
- 3) In all steps of the process there was interaction between TSOs, NRAs and the consultant, notably through many workshops. The interaction helped in the correct interpretation of definitions among participating TSOs and NRAs.
- 4) After data collection, national validation at NRA level has been performed. The goal of national validation is to assure that data is complete, consistent, correct and plausible.
- 5) After National validation, cross validation was done by the consultant. The goal of cross validation is that remaining misinterpretation of definitions amongst countries are detected and corrected for. In an ideal world it should not be necessary, but practice is unruly and a cross validation is necessary.
- 6) Finally, data analysis has been done by Sumicsid to develop a benchmark model. This is seen as part of the data quality strategy as data analysis may reveal errors in the data that was not picked up by national or cross validation. So actually, the validation (i.e. the previous layer) did not have a well-defined ending, it continued as long as the analysis and modelling were in progress.
- 3.05 TSOs were not asked to audit their data formally by an independent auditor. A first reason for that is that the data definitions take the audited annual accounts as starting point. Furthermore, NRAs will also check data against sources like regulatory data, which are often audited and validated before. Also, an audit often focuses on just a part of the data, mostly the financial accounts. So, an explicit audit on the benchmark data for each TSO was not seen as a necessary part of the data quality strategy.

- 3.06 Final data checks were done in March/April 2019. All TSOs and NRAs received a dump of asset and financial files that they could check on missing or incorrect data. For many TSOs a few final corrections have been made, leading to data sets of good quality.
- 3.07 Although no strategy will be fully safe, CEER believes that its structured approach was indeed vital in securing a successful benchmark project.

3.3 Environmental data

- 3.08 The TCB18 benchmark model addresses several environmental factors, like landuse, slope, humidity etc. To do this data is required about such factors. In E2GAS (CEER gas TSO benchmark 2015/2016) this data was collected by asking TSOs to specify the operating conditions at asset level. The main drawback of that approach was that it stimulated strategic reporting. Also, item-wise reporting assumed all environmental effects and their combinations to be known beforehand, making statistical analysis difficult and the results too dependent on the engineering assumptions. Finally, the capacity and resources necessary from the TSOs to estimate the different factors vary and depend on the importance assigned to the benchmarking results in the respective countries. All these reasons made the E2GAS approach less attractive.
- 3.09 In E3GRID, the consultants collected some aggregate indicators at country level, e.g. population density, that were used as proxies for environmental complexities. This approach is exogenous and "equitable", but the resulting adjustment for environmental conditions is rather crude, prompting various technical measures in the benchmarking techniques to avoid absurd results. The E3GRID approach was therefore judged to be unsatisfactory for the new benchmarking.
- 3.10 TCB18 is not only a one-shot project to arrive at a unique model. It is one step towards a structured development of periodic regulatory benchmarking. As such, the priority is also to provide structurally and incentive-analytically sound solutions for future repetitions. An ideal solution would be to organize external collection of all environmental conditions from public established databases based on the actual asset locations for all participants. In subsequent runs these reporting restrictions and the format for delivery and processing of environmental data could be developed as an addon project to TCB18, leading to several interesting applications also for the TSOs own use. Combining open databases for landuse, soil type, humidity, topography et.c. into a platform where the environmental complexity could be objectively assessed without any manual intervention by operators or regulators would be a desired outcome of this process.
- 3.11 The process proceeded initially by an independent identification of the relevant environmental factors by type of energy (gas, electricity), the assets concerned by factor, the economic rationale of impact and the hypothesized magnitude (See Appendix F). The consultants thereafter identified and collected the corresponding data items from the available data bases, subjecting the data to statistical tests for impact using the reported data.
- 3.12 The sources in Table 3-1 were used for analysis, in particular the Copernicus and CORINE GIS-based metrics derived for each TSO.

Table 3-1	Data sources	for environmental	factors

Condition	Source	Granularity
Landuse (agricultural, urban,)	EUROSTAT	Country
Landuse (type of use)	CORINE (GIS)	TSO
Vegetation (shrubs, grass,)	EUROSTAT	Country
Area (forests, lakes, mountains,)	EUROSTAT, OECD	Country
Climate (wind, icing, salt, extreme temperature)	WeatherOnline, Geographic	City
Road infrastructure	OECD	Country
Topography (ruggedness, coastal area)	Puga et al. (2012)	Country
Topography (slope)	Copernicus (GIS)	TSO
Humidity conditions (wetness, water)	Copernicus (GIS)	TSO
Soil conditions (subsurface features)	Copernicus (GIS)	TSO

3.13 The granularity of the GIS-based data is very good. As an example, the slope factor (a key factor in the construction costs for major infrastructure projects over land) is estimated in Copernicus from cells with a side of 25m, providing height data with a vertical accuracy of 7m, based on satellite imagery and geographical modelling. The data allows detailed calculations of the share of any area within given ranges of slopes, defining the concepts as 'hilly', 'undulating', 'mountainous' etc. objectively and with high scientific validity.

3.4 Special conditions

- 3.14 During the project TSOs were given an opportunity to signal conditions that are not addressed by the benchmark model, but they think should have been. Such conditions are referred to as special conditions and may call for correction of benchmarked scope or data, or the benchmark model. The concept of special conditions evolves from the concept of so-called Z-factors in previous CEER benchmarks.
- 3.15 Defining and implementing special conditions is meant to get closer to the purpose of the benchmark, i.e. to define best practices. As all TSOs in the sample will be related to frontier companies, it is therefore important that special conditions should only be labelled as such if they stand a number of criteria:

Complementarity

This criterion is meant to distinct conditions that are already sufficiently dealt with by the benchmark model from conditions that are not and may need complementary treatment. For example, if the condition can be dealt with by building additional standard assets, and if the model would "credit" TSOs for their asset base, then the condition is likely to be already considered sufficiently by the model. There can actually be two reasons for complementary treatment. First of all, this could be the case if the benchmark model is insufficiently specified. A typical example of complementary treatment in such case would be the change or addition of a modelling parameter. Secondly, complementary treatment may be called for if the claimed condition is something very specific that only one or few TSOs in the sample have to live with, i.e. the condition is relatively unique to the claimant. At all times and most importantly, complementary treatment will only be done if doing so fits the purpose of the benchmark.

Objectification

3.17 A special condition is something that, so to say, overcomes a TSO, i.e. it can reasonably not be held against the TSO and this should not be arguable. Special conditions must not be defined in terms of the (subjective) strategy to deal with the condition. So a claim cannot be formulated like "we do A because of condition C", because A would only refer to a choice made by the TSO that may be up for efficiency analysis. Instead a claim should be formatted like "we are faced with condition C and dealing with it inevitably comes with a disadvantage (compared to not having C)." So, both the condition C and the unavoidability of a disadvantage must fully and inarguably be beyond control of the TSO. Objectivity also implies that the condition is conceptually simple, obvious, and transparent, even to less informed public.

Durability

Incidents do not qualify as special conditions, think e.g. of a flooding in a certain year. Instead, special conditions are supposed either to exist over a substantial part of the reporting period, i.e. many years, or to exist for many years in the future impacting operations in the past. No explicit norm for this has been set as it may depend on the precise nature of the condition (geographical, technical, economical, etc.). At any rate, this criterion is meant to separate structural circumstances from incidents.

Materiality

- 3.19 Special conditions can only be recognized as such if they come with a well-defined and significant cost impact. The cost impact of a special condition is defined as the minimum unavoidable cost to deal with the condition. This is what is seen as the value of the claim. Put differently, the value of the claim is the cost difference between the lowest cost alternative to deal with the condition (this is not per se the alternative that is actually implemented) and the cost that would have been made if the condition would not exist. At any rate, the cost impact of a special condition must be clearly quantifiable. If quantification is ambiguous or poorly documented, it will be difficult to correct in the benchmark for the condition. Moreover, it would signal that the condition does not have (had) the explicit attention of management as such, which makes the condition being a special one less credible. Also, the (monetary) value of the claim must be significant, i.e. it must be big enough to significantly impact the outcome of the benchmark. A soft norm for this is about 5 percent of the benchmarked gross investment stream of the claimant or, if the claim is about expenses only, about 5 percent of its benchmarked expenses. This is important to avoid erosion of the best practice frontier by relatively small peculiarities of which all TSOs will have some, some fortunately, some unfortunately.
- These criteria are cumulative, forming a firewall to improper claims in order to protect the hygiene of the best practice frontier, which is in the interest of all TSOs. Individual interests can only impact the benchmark if this is reasonable to all. Nevertheless, as the benchmark can be used in regulation, individual interests are of course quite relevant, think of a severe unfortunate incident in the reference year, strong political pressure on the TSO, legacy, or regulatory decisions. However, such cases boil down to interpretation of an individual benchmark score, which is a national affair between individual NRAs and TSOs, just like with implementation of benchmark results afterwards in regulatory decisions. So it is important to bear in mind that there is a cut-off point where international benchmarking stops and national interpretation and implementation starts. The benchmark model defines that point and the criteria for special conditions are instrumental to that.
- 3.21 The text in the above was part of a special conditions reporting guide of which a first draft was consulted in July 2018 (Appendix C). The final version of September 2018 was

almost the same as the draft. TSOs were given time until early January 2019 to submit claims.

3.22 8 TSOs submitted in total 25 claims of which 16 were rejected by the PSG and 9 were put under investigation. The rejected claims, including the reason for rejection read:

Table 3-2 Operator specific claims rejected with motivation.

TSO	Claim	Grounds for rejection
TenneT	TenneT is required to build Wintrack towers to optimize for magnetic fields and to fit in the landscape.	The submitted claims show that all TSOs face certain obligations, even though this differs countrywise. In fact, also TSOs that did not claim anything in this area face many obligations. Therefore, correcting this only for TSOs that claimed in this area would bias the benchmark result. Also, Wintrack is related to density issues, which will be tested for in model development. Also, see the claim from Energinet, showing commonality to some extent.
TenneT	Costs for brownfield (replacement) investment are higher that greenfield.	Age will be addressed in the model. The Norwegian TSO also claims that newer construction projects are more expensive than older ones. The claim is not substantiated.
Energinet	Energinet is required to build the 400 kV Kasso-Tjele line with new design towers.	The submitted claims show that all TSOs face certain obligations, even though this differs countrywise. In fact, also TSOs that did not claim anything in this area face many obligations. Therefore, correcting this only for TSOs that claimed in this area would bias the benchmark result. Also, new design towers relate to density issues, which will be tested for in model development. See a claim from TenneT as well, showing commonality to some extent.
TenneT DE	DLR and 80 degrees retrofitting increases capacity without building new lines.	Not material and also not unique, but it could be something for future benchmarks. CEER will consider in future benchmarks to differentiate between nominal and operational capacity.
TenneT DE	Due to increasing infeed of renewable energy sources (RES), the loading of the grid is higher. To keep the stability of the system, it is necessary to have short error clarifications times. This is a prerequisite to use DLR and integrate RES. For that a full redundant protection scheme as well as respective telecommunication connections was to be built.	Not material and also not unique. Related to another claim of TenneT DE.

TenneT DE	Risks associated with blackout led to emergency power diesel aggregates on all substations.	Not material. This claim is also quite common, showing that all TSOs need to secure supply as part of their business. Claims of this kind do not convince that obligations are much more severe in some country than in others. Diesel backup generators also appear in other countries.
TenneT DE	Rebuilding of control technique to ensure stability of the system.	Not material. This is also regarded managerial, hence not an exogenous circumstance.
APG	OPEX labour costs differ in Europe.	Addressed in benchmark model.
APG	OPEX price levels differ in Europe.	Addressed in benchmark model.
APG	CAPEX for lines before Austria joined	The benchmark model accounts for differences
	EU in 1995 was 20% higher.	in price levels.
APG	CAPEX labour costs differ in Europe.	Addressed in sensitivity analysis for model.
APG	CAPEX price levels differ in Europe, OECD price levels should be used.	The benchmark model accounts for differences in price levels.
Eles	Obligations for labour lead to 5% higher expenses.	Addressed in model. Also, the obligation mentioned holds in more countries.
Statnett	Regulator imposes system operations tasks for the distribution grid.	Reported under activity S which will not be benchmarked in TCB18.
Statnett	Over time standards and demands for (a.o.) safety and environment become stricter leading to higher CAPEX.	This is a common phenomenon, also claimed by another TSO. Also, the benchmark model addresses age effects.
REE	Obligations to ensure safe fire line require frequent inspection, maintenance and vegetation pruning.	Not unique, multiple TSOs face similar obligations

3.23 Claims that were put under investigation are listed in Table 3-3:

Table 3-3 Investigated operator-specific claims.

TSO	Claim	Consideration in model
TenneT	Soil conditions require drainage of soil and deep foundations of substations and towers.	Soil conditions were part of the environmental conditions tested on GIS data for inclusion. Tower design explicitly included as output variable.
TenneT	High speed winds and icing requirements due to proximity to the coast require heavier towers and frequent painting.	Icing conditions tested for inclusion, not selected and not significant in second-stage analyses. Wind conditions not well defined for the cost functions (Appendix F), but tower desing included as output.
TenneT	Higher population density leads to higher cost.	Population density considered through landuse data at GIS-level, output variable.
TenneT DE	Deep foundations of substations and towers needed.	See soil conditions.
TenneT DE	Icing requirements require stronger towers.	Icing tested and not included, not significantly differentiating among TSOs.
APG	Average Britain/US NormGrid weights for lines do not consider Austrian topography.	Average weights are corrected in the model for landtype conditions at GIS level. In addition, tower design and routing complexity are considered.
Statnett	Wind and ice, topography and accessibility lead to a classification in easy, normal and difficult lines.	The three classes are not exhaustive for the study, landuse and routing complxxity are considered, icing is not included, wind included only through tower material choice.
IPTO	Difficult topography.	Topography considered through landuse and tower/routing design outputs.
REE	High speed winds and icing requirements due to proximity to the coast require frequent inspection, maintenance and painting.	Landuse and routing complxxity are considered, icing is not included, wind included only through tower material choice.

Putting the claims in Table 3-3 under investigation means that the impact of the claim was tested for in the cost driver analysis. As defined, none of the claims were defined as separate cost drivers, but rather captured by correlations to other parameters. With the exception of wind, all other factors were tested on relevant data. The consideration of average or worst case wind data was not prescribed by the engineering analysis at this stage.

4. Methodology

This Chapter is devoted to the discussion of the methodological approach that has been used in the TSO benchmarking, including the important preparation in terms of activity analysis, cost standardization, asset aggregation and correction for structural comparability. The Chapter then addresses model specification and method choice.

4.1 Background

- 4.01 The benchmarking model is pivotal in incentive-based regulation of natural monopolies. By essence, benchmarking is a relative performance evaluation. The performance of a TSO is compared against the actual performance of other TSOs rather than against what is theoretically possible. In this way, benchmarking substitutes for real market competition.
- 4.02 Of course, the extent to which a regulator can rely on such pseudo competition depends on the quality of the benchmarking model. This means that there is no simple and mechanical formula translating the benchmarking results into for example revenue caps. Rather, regulatory discretion or explicit or implicit negotiations between the regulator, the industry and other interest groups is called for.

4.2 Steps in a benchmarking study

- 4.03 The development of a regulatory benchmarking model is a considerable task due to the diversity of the TSOs involved and the potential economic consequences of the models. Some of the important steps in model development are:
- 4.04 Choice of variable standardizations: Choices of accounting standards, cost allocation rules, in/out of scope rules, asset definitions and operating standards are necessary to ensure a good data set from TSOs with different internal practices.
- 4.05 **Choice of variable aggregations:** Choices of aggregation parameters, such as interest and inflation rates, for the calculation of standardized capital costs and the search for relevant combined cost drivers, using, for example, engineering models, are necessary to reduce the dimensionality of potentially relevant data.
- 4.06 Initial data cleaning: Data collection is an iterative process where definitions are likely to be adjusted and refined and where collected data is constantly monitored by comparing simple Key Performance Indicators (KPIs) across TSOs and using more advanced econometric outlier detection methods.
- 4.07 Average model specification: To complement expert and engineering model results, econometric model specification methods are used to investigate which cost drivers best explain cost and how many cost drivers are necessary.
- 4.08 Frontier model estimations: To determine the relevant DEA (and depending on data availability SFA) models, they must be estimated, evaluated and tested on full-scale data sets. The starting point is the cost drivers derived from the model specification stage, but the role and significance of these cost drivers must be examined in the frontier models,

and alternative specifications derived from using alternative substitutes for the cost drivers must be investigated, taking into account the outlier-detecting mechanisms.

- 4.09 Model validation: Extensive second-stage analyses shall be undertaken to see if any of the non-included variables should be included. The second-stage analyses are typically done using graphical inspection, non-parametric Kruskal-Wallis tests for ordinal differences and truncated Tobit regressions for cardinal variables. In addition to second stage control for possibly missing variables, it is desirable to perform extensive robustness runs to ensure that the outcome is not too sensitive to the parameters used in the aggregations.
- 4.10 It is worth emphasizing that model development is not a linear process but rather an iterative one. During the frontier model estimation, for example, we identified extreme observations resulting from a data error not captured by the initial data cleaning. In turn this may lead to renewed data collection and data corrections. Such discoveries make it necessary to redo most steps in an iterative manner.

4.3 Activity analysis and scope

- 4.11 Benchmarking relies crucially on the structural comparability of the operators constituting the reference set. Differences in structure primarily result from differences in (i) assigned transport tasks, (ii) interfaces with other regulated or non-regulated providers and (iii) asset configuration. The identification of the main functions is the first action in a benchmarking context since different operators cover different functions and therefore cannot be directly compared at an aggregate level. The identification is also crucial since different regulations and usages of the performance evaluations may require different perspectives.
- 4.12 An electricity TSO performs a range of functions from market facilitation to asset management. The task here is twofold; first to make a systematic and relevant aggregation of the different activities and to map them to existing or obtainable data that could be reliably used in an international benchmarking. Second, the scope must be judged against the types of benchmarking methods and data material realistically available. E.g. if the activity (say planning) yields output for a horizon way beyond the existing data, the activity is not in the relevant scope for a short-term benchmarking.
- 4.13 The common core task for the electricity TSOs here is defined as providing and operating the assets for transport and transit of energy. More specifically, we focus on (i) transmission using high-voltage overhead lines and cables, (ii) transformation at the high-voltage level interfacing with other grids, generation or distribution system operators, and (iii) activities: grid planning, grid maintenance, and grid operation. Other elements, notably system operations and market facilitation and storage, are out of scope in TCB18. For more discussion of the definition of relevant scope, see the E3GRID study (2013).

4.4 Grid transmission activities

4.14 The fundamental objective of a transmission system operator is to transport energy to interconnected networks, generators, distribution networks and other connected clients.

- 4.15 By distinguishing activities, the autonomy and independency of an operator may be put in a correct context to enable, among other things, performance assessments. The activities are listed below.
- 4.16 Note that in previous benchmarking, activities such as Grid construction (C) or Grid financing (F) were listed and defined. In this project, these activities are no longer informative for validation or comparability. In practice, almost all activities of construction are capitalized and the activity has no assets, staff or costs in the accounts of the typical TSO. Likewise, the financial activities related to grid operations are not susceptible to standardization.

4.5 T Transport

- 4.17 The transport activity includes the operation of the injection, transport and delivery of energy through the transmission system, from defined injection points to connection points interfacing a client, a downstream network, or an interconnection to another transmission network. The transport activity is enabled by the operations of grid assets for transport (lines and transformers for electricity, pipelines and compressors for gas). The transport activity thus comprises the day-to-day activities of real-time flow control, metering and operational control and communication.
- 4.18 The assets utilized for transport constitute the power system characterizing the TSO. The operational expenses for transport include staffing control centers, inspections, safety and related activities, including direct costs for products and services as well as staff.
- 4.19 The cost for energy used in transport (covering internal consumption and losses) is reported separately under T to control for structural comparability

4.6 M Grid maintenance

- 4.20 The maintenance of a given grid involves the preventive and reactive service of assets, the staffing of facilities and the incremental replacement of degraded or faulty equipment. Both planned and prompted maintenance are included, as well as the direct costs of time, material and other resources to maintain the grid installations. It includes routine planned and scheduled work to maintain the equipment operating qualities to avoid failures, field assessment and reporting of actual condition of equipment, planning and reporting of work and eventual observations, supervision on equipment condition, planning of operations and data-collection/evaluation, and emergency action.
- 4.21 The activity may have assets (spare parts) and operating costs (direct, staff and outsourced services).

4.7 P Grid planning

4.22 The analysis, planning and drafting of power network expansion and network installations involve the internal and/or external human and technical resources, including access to technical consultants, legal advice, communication advisors and possible interaction with European, governmental and regional agencies for preapproval granting.

- 4.23 Grid planning also covers the general competence acquisition by the TSO to perform system-wide coordination, in line with the IEM directive, the TEN corridors and the associated ENTSO tasks. Consequently, costs for research, development and testing, both performed in-house and subcontracted, related to functioning of the transmission system, coordination with other grids and stakeholders are reported specified under grid planning P.
- 4.24 The activity has no assets and operating costs (direct, staff and services). In the case internal planning costs are capitalized, this is noted in the investment stream.

4.8 I Indirect support

- 4.25 With indirect services, we refer to services related to the general management of the undertaking, the support functions (legal, human resources, regulatory affairs, IT, facilities services etc.) that are not directly assigned to an activity above. Central management, including CEO, Board of directors and equivalent is also explicitly included.
- 4.26 In principle, the residual assets for a transmission system operator (e.g. office buildings, general infrastructure) could be considered as assets for Indirect support.
- 4.27 However, to the extent that this entails the incorporation of land, land installations and non-grid buildings in the analysis, all of which are susceptible to be country specific investments, such elements are excluded from the benchmarking.

4.9 S System operations

- 4.28 Within system operations for electricity transmission, ancillary services are retained as defined in 2009/72/EC and congestion management (compliant with the ENTSO-E classification). Ancillary services include all services related to access to and operation of electricity transmission networks, including balancing.
- 4.29 ENTSO-E further considers the transparency in data exchange with the purpose of interoperability as a specific point in system operations. In consequence, costs related to this activity per se are to be considered as system operations.
- 4.30 If part of the services above are delegated to subordinate (regional) transmission coordinators with limited decision rights, the associated costs are included in system operations.
- 4.31 System operations has no assigned assets, the costs are direct costs for services and staff.

4.10 X Market Facilitation

4.32 Market facilitation includes all direct involvement in energy exchanges through information provision or contractual relationships. This comprises regulated tasks through procurement of renewable power, residual buyer obligations or capacity allocation mechanisms, capacity auctioning mechanisms, and work on coordination of feed-in tariffs.

- 4.33 The market facilitation activity is composed uniquely of direct expenses related to the contractual relations excluding transport and storage, primarily information costs and energy purchases for other purposes than the consumption in their own grid.
- 4.34 The activity has no eligible assets and no staff costs.

4.11 TO Offshore transport

4.35 The transport and transit of electricity through offshore assets (i.e. subsea cables and subsea interconnectors, see Asset reporting guide ELEC (Appendix A), art 11, are considered as offshore transmission activities.

4.12 O Other activities

4.36 A TSO may have marginal activities that are not covered by the classification above, such as external operator training, field testing for manufacturers, leasing of land and assets for non-transport use. These activities should be listed, the costs and assets should be specified and excluded from the benchmarking.

4.13 Scope

4.37 Based on the analysis of common factors in cost reporting, the variability and homogeneity of the data and the separability of the activity, it was decided to define the benchmarked scope as the structurally comparable core activities of the transmission operator, i.e. T, M, P, and I (partially), see Figure 4-1 below. Planning (P) was included as it was present in all TSOs and considered as a techno-economic necessity, inseparable from the investment and operational activities.

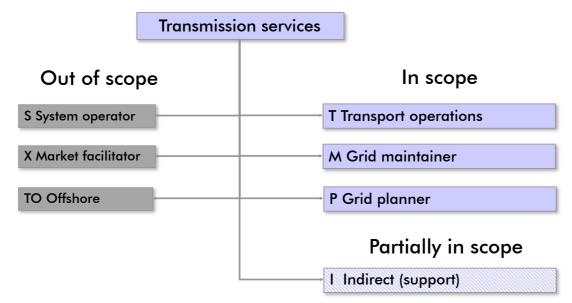


Figure 4-1 Benchmarked activities and scope.

4.38 To permit a mapping of the P&L onto the activities, the operators also report the activities S, X, TO, and, if applicable, O. These activities are to be validated to avoid cost leakage, but are not in the planned benchmarking scope.

4.14 Cost definitions and standardization

- 4.39 Benchmarking models can be grouped into two alternative designs with an effect on the scope of the benchmarked costs:
 - A. A short-run maintenance model, in which the efficiency of the operator is judged-based on the operating expenditures (Opex) incurred relative to the outputs produced, which in this case would be represented by the characteristics of the network as well as the typical customer services.
 - B. A long-run service model, in which the efficiency of the operator is judged-based on the total cost (Totex) incurred relative to the outputs produced, which in this case would be represented by the services provided by the operator.
- 4.40 From the point of view of incentive provision, a Totex based approach (B) is usually preferred. It provides incentives for the TSOs to balance Opex and Capex solutions optimally. In this study, the focus is therefore on Totex benchmarking.
- 4.41 The standardization of costs plays a crucial role in any benchmarking study, especially, when the study is international. Below we discuss the derivations of the benchmarked operating and capital cost, leading to the final benchmarked dependent variable; the benchmarked Totex.

4.15 Benchmarked OPEX

4.42 There are various steps involved in order to derive the respective benchmarked Opex for the benchmarked functions in scope below, see Figure 4-2 below.

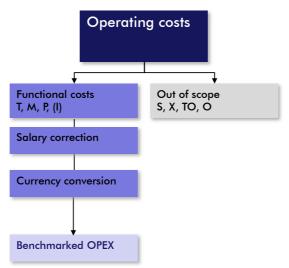


Figure 4-2 Steps in deriving benchmarked OPEX.

- 4.43 The relevant cost items for OPEX, derived directly from the TSOs' data per activity are added together (cf Cost reporting guide, Appendix B).
- 4.44 Depreciation of grid related assets is excluded from this list, as this is covered by the benchmarked CAPEX.
- 4.45 The cost of energy is deducted from benchmarked OPEX at this step.

OPEX: Labor cost adjustments

- In order to make the operating costs comparable between countries a correction for differences in national salary cost levels has been applied. Otherwise TSOs would be held responsible for cost effects, e.g. high wage level, which is not controllable by them.¹ The basis for the labor cost adjustment is the labor cost, not the data collected on FTE (full time equivalent employees) by function, since these data were less reliable.
- 4.47 The salary adjustment consists of two steps:
 - 1) Step 1 adjustment of direct manpower costs by increasing/decreasing the direct manpower costs of the companies using the respective salary index.
 - 2) Step 2 reversal of part of salary adjustment. Step 1 applies to a gross value, while the Opex entering the benchmarking is a net value after deducting direct revenues (for services outside the scope of the benchmark). Hence, some part of the salary adjustment has to be reversed considering that the share of direct manpower costs is proportionally smaller in the Opex used for benchmarking.
- 4.48 The correction for systematic salary cost differences can be made by several indexes, see Table 4-1 for those collected and tested in the study. The general indexes, such as the EUROSTAT index for all services (LCIS) correlates poorly to the actual salary differences observed among the TSOs, primarily since the basis for the index involves services not involved in transmission. Figure 4-3 illustrates three indexes, whereof the PLICI index was chosen since its scope (civil engineering services) corresponded the best to the differences between the salaries paid and European average. Compared to previous studies using general indexes, the current approach provides a lower variance in the estimation, better fitting the real differences.

We note that there is some simplification involved in the logic of salary cost adjustment. Had the respective operator truly had lower (or higher) salary cost then it may in practice also have chosen a different mix of production factors - e.g. operate less (or more) capital intensively. However, we do not consider this in the context of salary cost adjustments.

Table 4-1 Labor cost indexes tested (PLI	CI selected).
--	---------------

Index	Source	Туре	Scope
Plits	EUROSTAT	Price level index	Services
Plitg	EUROSTAT	Price level index	Goods
Plico	EUROSTAT	Price level index	Construction
Plici	EUROSTAT	Price level index	Civil eng
Lcis	EUROSTAT	Labor cost index	Services
Lcig	EUROSTAT	Labor cost index	Goods
Lcic2	EUROSTAT	Labor cost index	Construction F
Lciusm	Fed Bank	Purchasing parity	Manufacturing
Coc	EUROSTAT	Price level index	Construction

OPEX: Inflation adjustment

4.49 Opex data has been collected for 2013-2017 (81 observations). Hence, an indexation to a base year is necessary to make the costs comparable over the years. As for CAPEX, the harmonized price index for overall goods (HICPOG) is used, defining 2017 as the base year.

OPEX: Currency conversion

4.50 All national currencies are converted to EUR in 2017 by the average annual exchange rate.

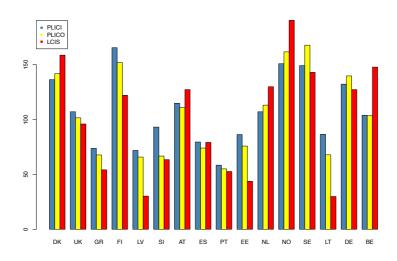


Figure 4-3 Labor cost indexes (EUROSTAT, PLICI=Civil engineering, PLICO = Construction)

4.16 Benchmarked CAPEX

4.51 As accounting procedures, depreciation patterns, asset ages and capital cost calculations differ between countries and sometimes even between operators depending on their ownership structure, the CAPEX needs to be completely rebuilt from the initial investment stream and up. In addition, a real annuity must be used since the application of nominal depreciations (even standardized) would immediately introduce a bias towards late investments. The steps involved in the calculation of benchmarked CAPEX are given in Figure 4-4 below.

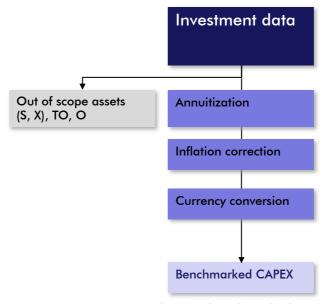


Figure 4-4 Steps in deriving benchmarked CAPEX.

CAPEX: Investment stream data

- 4.52 The starting point is the full investment stream reported by the operators from 1973 to 2017. Separating assets related to activities out of scope (S, X, TO, O), the residual investment stream is divided by type of asset as:
 - 1) Overhead lines,
 - 2) Cables,
 - 3) Circuit ends,
 - 4) Transformers,
 - 5) Compensating devices,
 - 6) Series compensation,
 - 7) Control centers,
 - 8) Other equipment.

CAPEX: Standard life times

- 4.53 The differentiation in investment is subject to different techno-economic life times, i.e. the standard real annuities constituting CAPEX.
- 4.54 The standard life times per asset class are given in below.

Table 4-2 Standard techno-economic life times.

Asset class	Life time (yrs)
Overhead lines	60
Cables	50
Circuit ends	45
Transformers	40
Compensating devices	40
Series compensations	40
Control centers	20
Other assets	20
Equipment	10

4.55 Assets acquired as used of any asset class are collected with original commissioning year or the expected remaining life time. The reported residual life is used for the annuity calculation for used assets, bounded above at the standard life time in Table 4-2 Standard techno-economic life times. for new assets.

CAPEX: upgraded or (significantly) rehabilitated assets

- 4.56 In case the asset has been significantly rehabilitated the rehabilitation year also needs to be provided. Significant rehabilitation means a large incremental investment into an existing asset without change of any characteristics (i.e. its dimensions and properties). Large is defined as at least 25% of the (real) initial investment. Regular preventive and reactive maintenance, e.g. replacement of system components at or before their lifetime is not counted as a "rehabilitation". See also Appendix D.
- 4.57 Investments changing the characteristics are considered as "upgrades" and not as rehabilitation.
- 4.58 Investments linked to upgrading assets that change asset class are counted as new investments. Thus, the original asset is replaced in the asset data with the new asset.

CAPEX: corrections

- 4.59 The following items are used for the correction of the investment stream prior to the calculation of the annuities:
 - 1) Capitalized costs for out-of-scope assets (see Cost reporting guide, Appendix B)
 - 2) Capitalized costs for financial costs (construction interest)
 - 3) Capitalized taxes, fees and levies
 - 4) Direct subsidies, exceptional direct depreciation and internal labor as direct expense.
- 4.60 Capitalized cost for out-of-scope assets, financial costs and taxes etc. are deducted from the gross investment stream.
- 4.61 Direct subsidies and exceptional depreciation are added to the gross investment stream.

CAPEX: Real annuities

4.62 Capex consists of depreciation and a return on capital. The actual investment streams are annuitized using a standard annuity factor α (r, T), where r stands for a real interest rate; and T stands for the average life-time of the investments in the respective year, calculated from the shares in art 4.52. The annual investments from the investment stream data are multiplied with the annual standard annuity factor α (r, T).

4.63 The numerical values for the annuity factors are provided to each TSO in a specific file.

CAPEX: Real interest rate

4.64 The real interest rate in the TCB18 project is set to 3% for the base run. The sensitivity with respect to this parameter is subject to an analysis reported in art 5.24 below.

CAPEX: Inflation adjustment

The current value of the past investments relative to the reference year is calculated using inflation indexes. Ideally, a sector-relevant index would capture both differences in the cost development of capital goods and services, but also the possible quality differences in standard investments. However, such index does not exist to our best knowledge. Several indexes have been collected from EUROSTAT and OECD, see Table 4-3. In this study, contrary to earlier projects, a Harmonized Inflation Index for overall goods and services has been used, HICPOG. The index is specifically developed for international comparisons, which is not the case with conventional indexes such as CPI and PPI. This provision is ensured by selecting comparable services and goods for the index, rather than those potentially only being used domestically.

Table 4-3 Inflation correction indexes tested (HICPOG used).

Index	Source	Туре	Scope
Cpio	OECD	CPI	General
Cpiw	WorldBank	CPI	General
PPI	OECD	PPI	Producer goods
Hicpg	EUROSTAT	HICP	General
Hicpog	EUROSTAT	HICP	Overall goods
Hicpig	EUROSTAT	HICP	Industrial goods
Hicpmh	EUROSTAT	HICP	Maintenance

4.66 In addition, we have evaluated further indexes (CPI and other harmonized indexes) in the sensitivity analysis. Sector-specific indexes only exist for a handful of countries and require additional assumptions to be used for countries outside of their definition.

CAPEX: Currency conversion

4.67 As for OPEX, all amounts are converted to EUR values in 2017 using the average exchange rates. The exchange rates (annual averages of daily rates) used are provided among the public parameter files.

CAPEX: Old Capex

4.68 Investment stream data prior to 1973 are not required and by default are excluded, since they do not always exist or being of lower quality. However, without any correction this would create a bias towards operators with later opening investments, since these also include earlier assets. Thus, the calculation of the comparable Capex includes a residual element in 2017 corresponding to the pre-1973 assets still in the asset base.

The calculation is equivalent to a Capex Break for 1973, that is the Capex unit cost from 1973 to 2017 is assumed prevail also up until 1973. In this manner, the inclusion of pre-1973 assets do not change the Capex-efficiency, but assures comparability. The calculated value, CapexOld, is capped by the sum of incumbent investments if known and validated. The methodology for the CapexBreak is described in Appendix E.

4.17 Benchmarked TOTEX

4.69 Summing up in Figure 4-5 we obtain the benchmarked Totex as the sum of Opex and Capex where C_f is the total OPEX for firm f and time f after currency correction, I_f is the investment stream for firm f and time g after inflation and currency correction, and g(r,T) is the annuity factor for asset with life time T and real interest rate f.

Figure 4-5 Benchmarked Totex = Opex + Capex

4.18 Normalized Grid

- 4.70 Technically, the relevant scope is provided by an asset base consisting of:
 - 1) Overhead lines,
 - 2) Cables,
 - 3) Circuit ends,
 - 4) Transformers,
 - 5) Compensating devices,
 - 6) Series compensation,
 - 7) Control centers.
- 4.71 A very detailed dataset was collected for the six asset categories above. Naturally, it does not make sense just to sum the different asset together since they correspond to different dimensions, pressure levels, material choices and capacities. Likewise, the geographical nature of the power system makes it ideal to capture the environmental challenges through the following factors (see Appendix F):
 - 1) Land use
 - 2) Subsurface features
 - 3) Topography
- 4.72 Based on the data specification, a cost-norm for the construction costs for the standard assets above was developed, including the cost increases due to the environmental factors above. The result is an asset aggregate that we call the Normalized Grid (NormGrid; NG). Note that this detailed cost norm is independent of the actual costs and investments of the individual operator; it provides average costs rather than best-practice (or worst-practice) estimates. However, it is more general than a simple cost

catalogue since it provides a complete system of complexity factors that explain the ratio of cost between any two type of assets, irrespective of which year, currency or context it is applied to (within reasonable bounds of course).

- 4.73 The exact formulae for the NormGrid system are documented in Appendix F, accompanied by an Excel calculator made available for all project participants on the project platform. In addition, workshop W3 was specifically devoted to the development of the norm grid metrics.
- 4.74 The NormGrid measure for all assets is adjusted for joint ventures by scaling with the share of ownership reported. The same approach is also used for output indicators related to assets in joint ownership, e.g. towers, connection points and power measures.
- 4.75 The size of the grid as measured by the Normalized Grid (NormGrid; NG) is naturally a key driver for Opex and Capex. The NormGrid is the sum of Capex and Opex components, proportional to the same effects in the total expenditure.
- 4.76 The NormGrid Opex component is simply the weighted sum of assets in use at a given time, irrespective of their age:

$$NormGrid_{OPEX} = \sum_{t} \sum_{a} N_{at} w_{a}$$

where

 N_{at} Number of assets of type a in use, acquired at time t

 w_a OPEX weight for assets of type of type a.

4.77 The NormGrid component for Capex below, differs in two respects from the Opex component: first, it only concerns assets that are within their techno-economic life (=their annuity depreciation period), second, the weights are multiplied with the same annuity factors as for the corresponding investments:

$$NormGrid_{CAPEX} = \sum_{t} \sum_{a} n_{at} v_{a} \alpha(r, T_{a})$$

where

 n_{at} Number of assets of type a, acquired at time t and in prime age.

 v_a CAPEX weight for assets of type of type a

r Real interest rate

T_a Techno-economic standard life for assets of type of type a

 α () Real annuity function

4.19 Model specification

- 4.78 Any efficiency comparison should account for differences in the outputs and the structural environment of the companies. A key challenge is to identify a set of variables:
 - 1) that describe the tasks (the cost drivers) that most accurately and comprehensively explain the costs of the TSOs;
 - 2) that affect costs but cannot be controlled by the firm (environmental factors); and
 - 3) for which data can be collected consistently across all firms and with a reasonable effort
- 4.79 Conceptually, it is useful to think of the benchmarking model as in Figure 4-6 below. A TSO transforms resources X into services Y. This transformation is affected by the environment Z. The aim of the benchmarking is to evaluate the efficiency of this transformation. The more efficient TSOs are able to provide more services using less resources and in environments that are more difficult.
- 4.80 The inputs X are typically thought of as Opex, Capex, or Totex. In any benchmarking study and in an international benchmarking study in particular, it requires a considerable effort to make costs comparable. We have found in previous studies that a careful cost reporting guide is important to make sure that out-of-scope is interpreted uniformly, and that differences in depreciation practices, that taxes, land prices, labor prices etc. are neutralized.

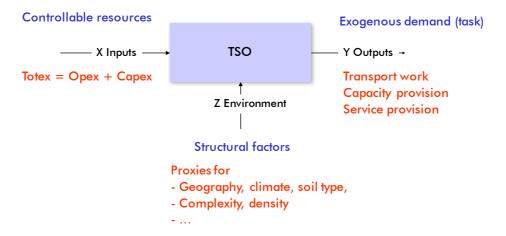


Figure 4-6 Conceptual benchmarking model

4.81 The outputs Y are made of exogenous indicators for the results of the regulated task, such as typically variables related to the transportation work (energy delivered etc.), capacity provision (peak load, coverage in area etc.) and service provision (number of connections, customers etc.). Ideally, the output measures the services directly. In practice, however, outputs are often substituted by proxies constructed as functions of the assets base, like total circuit length, transformer power, number of connections, etc. One hereby runs the risk that a TSO could play the benchmarking-based regulation by installing unnecessary assets. In practice, however, we have found that this is not a major risk in the early stages of the regulation and that the advantages of using such output indicators outweigh the risk. We shall therefore think more generally of the outputs as the cost drivers.

- The class of structural variables Z contains parameters that may have a non-controllable influence on operating or capital costs without being differentiated as a client output. In this class we may often find indicators of geography (topology, obstacles), climate (temperature, humidity, salinity), soil (type, slope, zoning) and density (sprawl, imposed feed-in locations). One challenge with this class of parameters is that they may be difficult to validate statistically in a small data sample. Their role of potential complicating factors will therefore have to be validated by other studies or in a process of individual claims from the TSOs. Another challenge is that in a small dataset, the explicit inclusion of many complicating factors will put pressure on the degrees of freedom in a statistical sense. This is also the approach we have taken in this study. We have used elaborate engineering weight systems of the grid assets to reflect the investment and operating conditions. In this way, Z factors can to a large extent be captured by the traditional Y factors.
- 4.83 To ensure that the model specification is trustworthy, it is important to decide on some general principles as well as some specific steps. Based on our experience from other projects, we have in this project focused on the following generic criteria:
 - 1) **Exogeneity** Output and structural parameters should ideally be exogenous, i. e. outside the influence of the TSOs.
 - 2) Completeness The output and structural parameters should ideally cover the tasks of the TSOs under consideration as completely as reasonable.
 - 3) **Operability** The parameters used must be clearly defined and they should be measurable or quantifiable.
 - 4) Non-Redundancy The parameters should be reduced to the essential aspects, thus avoiding duplication and effects of statistical multi-collinearity and interdependencies that would affect the clear interpretation of results.
- In reality, it is not possible to stick to these principles entirely. In particular, exogeneity must be partly dispensed with since the network assets are endogenous but also in many applications providing good approximations of the exogenous conditions. To rely entirely on exogenous conditions would require a project framework that far exceeds the present both economically and time wise.
- 4.85 The process of parameter selection combines engineering and statistical analysis. We have in this project used the following steps:
 - 1) **Definition of parameter candidates**. In a first step we established a list of parameter candidates which may have an impact on the costs of TSOs. The relationships between indicators and costs must be plausible from an engineering or business process perspective.
 - 2) Statistical analysis of parameter candidates. Statistical analysis was then used to test the hypotheses for cost impacts for different parameter candidates and their combinations. The main advantage of statistical analysis is that it allows us to explore a large number of candidate parameters and to evaluate how they individually and in combination allow us to explain as much as possible of the cost variation.
 - 3) Plausibility checks of final parameters. The final parameters from the statistical analysis are finally checked for plausibility. This plausibility check is based *inter alia* on engineering expertise.
- 4.86 The model specification steps above have supported the model specification process. However, model development in transmission operation benchmarking is not a datamining exercise that follows blindly from statistical analyses aiming at predictive models. It may be that some parameters that help explain average costs have little

techno-economic sense or explanatory power in the frontier-based benchmarking model and vice versa. The model specification steps have therefore been combined with careful second stage analysis to ensure that no frontier relevant parameters have been left out.

4.20 Benchmarking methods

4.87 Econometrics has provided a portfolio of techniques to estimate the cost models for networks, illustrated in Table 4-4 below. Depending on the assumption regarding the data generating process, we divide the techniques in *deterministic* and *stochastic*, and further depending on the functional form into *parametric* and *non-parametric* techniques. These techniques are usually considered state of the art and are advocated in regulatory applications provided sufficient data is available.

Table 4-4 Model taxonomy.

	Deterministic	Stochastic
Parametric	Corrected Ordinary Least Square (COLS) Greene (1997), Lovell (1993), Aigner and Chu (1968)	Stochastic Frontier Analysis (SFA) Aigner, Lovell and Schmidt (1977), Battese and Coelli (1992), Coelli, Rao and Battese (1998)
Non- Parametric	Data Envelopment Analysis (DEA) Charnes, Cooper and Rhodes (1978), Deprins, Simar and Tulkens (1984)	Stochastic Data Envelopment Analysis (SDEA) Land, Lovell and Thore (1993), Olesen and Petersen (1995)

In a study of European electricity TSOs, the number of observations is too small for a full-scale application of SFA as main instrument. We have therefore used DEA as our base estimation approach, in line with regulatory best practice and earlier studies such as E2GAS and E3GRID. The DEA method is by now well established in the scientific literature as well as in regulatory applications, and we shall therefore not provide a theoretical description of it here. Further details are provided in e.g. Bogetoft and Otto (2011)

4.21 Frontier outlier analysis

- 4.89 Outlier analysis consists of screening extreme observations in the frontier model against average performance. Depending on the approach chosen (OLS, DEA, SFA), frontier outliers may have different impact. In DEA, particular emphasis is put on the quality of observations that define best practice. The outlier analysis in DEA can use statistical methods as well as the dual formulation, where marginal substitution ratios can reveal whether an observation is likely to contain errors. In SFA, outliers may distort the estimation of the curvature and increase the magnitude of the idiosyncratic error term, thus increasing average efficiency estimates in the sample. In particular, observations that have a disproportionate impact (influence or leverage) on the sign, size and significance of estimated coefficients are reviewed using a number of methods (cf. Agrell and Niknazar, 2014).
- 4.90 In non-parametric methods, extreme observations are such that dominate a large part of the sample directly or through convex combinations. Usually, if erroneous, they are fairly few and may be detected using direct review of multiplier weights and peeling techniques. The outliers are then systematically reviewed in all input and output dimensions to verify whether the observations are attached with errors in data. The occurrence and impact of outliers in non-parametric settings is mitigated with the enlargement of the sample size.

Outlier detection in DEA

- 4.91 In frontier analysis, the observation included in a reference or evaluation set is called a Decision Making Unit (DMU). A DMU can be an observation of (inputs,outputs) for a firm at a given time (cross section) or at other time periods (panel data). Outlier DMU may belong to a different technology either by errors in data, or unobserved quantities or qualities for inputs or outputs. The identification of DMUs to check more carefully has used in particular two approaches.
- The outlier detection used in the final runs follows the German Ordinance for Incentive Regulation and the notion of DEA outliers herein (ARegV, annex 3). The invoked criteria are consistent with the method proposed and used in Agrell and Bogetoft (2007), representing a systematic and useful device to improve the reliability of regulatory benchmarking without resorting to *ad hoc* approaches. The idea is to use a dual screening device to pick out units that are doing extreme as individual observations and that are having an extreme impact on the evaluation of the remaining units. To do so, we use a super efficiency criterion similar to the Banker and Chang (2005) approach, although we let the cut-off level be determined from the empirical distribution of the super efficiency scores. In addition, we use a sums-of-squares deviation indicator similar to what is commonly seen in parametric statistics.
- 4.93 Let Ω be the set of n TSO in the data set and k be a potential outlier. Then define $E(h, \Omega)$ be the efficiency of a TSO h when all TSO are used to estimate the technology and let $E(h, \Omega/k)$ be the efficiency when TSO k does not enter the estimation. We can therefore evaluate the impact on the average efficiency by

$$\frac{\sum_{h\in\Omega/k}(E(h,\Omega/k)-1)^2}{\sum_{h\in\Omega/k}(E(h,\Omega)-1)^2}$$

- 4.94 Large values of this as evaluated in a F(n-1,n-1) distribution, cf. Banker (1996), will be an indication that k is an outlier.
- 4.95 Using also the super-efficiency criteria of the Ordinance (ARegV), we shall classify an entity k as an outlier to be eliminated if

$$E(k, \Omega/k) > q(0.75) + 1.5(q(0.75) - q(0.25))$$

4.96 where q(a) is the a-fractile of the distribution of super-efficiencies, such that e.g. q(0.75) is the super-efficiency value that 75% has a value below. Hence, this criterion indicates if there are units that are having much higher super-efficiencies than the other units. If the distribution is uniform between 0 and 1 in a large sample, for example, all other units are evenly distributed between 0 and 1, a candidate unit must have a super efficiency above 0.75+1.5*(0.75-0.25)=1.5 to classified as an outlier.

4.22 Allocation key for indirect costs

4.97 Several allocation methods were tested for indirect cost onto benchmarked functions. The staff data intensity was considered biased since it excludes external services. Thus, the retained key is based on direct costs, excluding energy and depreciation, for the respective activities, including out-of-scope and non-benchmarked activities.

Benchmarking results

This Chapter provides some general and average results from the benchmarking, without providing any information that may lead to the identification of individual operators and their results. The results from the robustness analysis are also included and commented.

5.1 Model specification

5.01 Based on conceptual thinking and a statistical analysis reported during Workshops W4 and W5, the final model specification in the TCB18 project includes three cost drivers as shown in Table 5-1 below.

Table 5-1 Model specification: Final model ELEC.

Variable	Definition
INPUT	
	Totex excl energy, inflation index HICPOG, labor cost
dTotex.cb.hicpog_plici	adjusted in OPEX with PLICI
OUTPUT	
yNG_yArea	NormGrid assets weighted by landuse area yArea (% of service area) x complexity factors per class
yTransformers_power	Total installed transformer power (MW)
	Total line length, weighted by share of angular towers x
yLines.share_steel_angle_mesum	share of steel towers

Input in the model is total expenditure (Totex). It is calculated as standardized capital costs using real annuities and after correcting for inflation and currency differences plus standardized operating costs excluding cost of energy, out-of-scope activities. See the explicit formula in Chapter 4 on methods. Labor cost expenditures in Opex are adjusted to average European costs by the PLICI labor cost index. The final model is using three outputs: normalized grid (weighted sum of all grid components as explained in section 4.18), the landuse area share with complexity factors, the total capacity (measured as transformer power) and the length weighted with angular (routing complexity) and steel share (equipment standards). These parameters capture both the investment (capital expenditure) dimension through the normalized grid and the capacity and the operating cost dimension through the routing complexity parameter, leading to good explanatory results for the average cost in the sample. In general, the strongest candidate in the frontier models is the normalized grid. The next strongest cost driver candidate is the landuse dimension, highly significant with respect to both density, environmental and operational complexities. Thereafter follows the overhead lines, irrespective of age and capacity, representing the routing complexity. Finally, the transformer power completes the model with the capacity provision dimension. Together the factors form a very strong explanatory base for the transmission system operators.

5.02 An initial proposal presented at Workshop W5 with a parameter for steel towers to capture the complexity from slope, soil and coastal conditions. Following the discussions with project participants at the workshop and additional techno-economic analysis, the new parameter **yLines.share_steel_angle_mesum** was developed, reflecting the environmental dimensions of density (routing complexity through angular tower incidence), soil, slope and salinity conditions (proportion of steel towers) weighted with

the total circuit length (no distinction in capacity or age). In this way, a potential problem of tower distance vs tower reinforcement has been avoided.

The final model resembles the model from e3GRID 2013², also a three-parameter model (Normalized grid, lineweigthed angular towers, densely populated area), but with several refinements. First, the normalized grid in TCB18 takes explicitly into account the landuse and density factors through a detailed GIS assessment (CORINE) by TSO, which was not yet available in 2013. Second, as a consequence the pure 'density' parameter in e3GRID is redundant by inclusion of the landuse area directly in the normgrid parameter. Third, the routing complexity parameter (angular towers over lines) is enhanced in TCB18 with the material choice information, reflecting slope, infrastructure and soil concerns limiting the use of low-cost options. Fourth, the capacity provision dimension that was missing in e3GRID is addressed with a parameter (transformer power) that is explicitly related to the transmission capacity of the system. The logic of the model specification with respect to the earlier categories is illustrated in Figure 5-1 below.

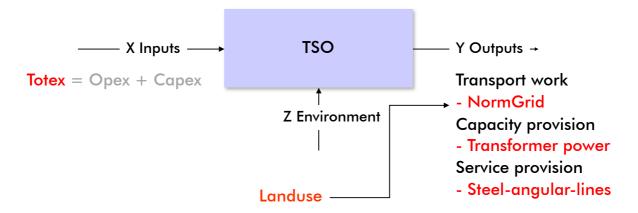


Figure 5-1 Final ELEC model with service categories.

yNormGrid yArea

The NormGrid provides a Totex-relevant proxy for the total power system, summing all relevant assets with weights corresponding to their Capex and Opex impact. As documented in the engineering study (Appendix F), the major environmental impact arises from the installations with spatial impact, over or below ground. These factors include land use type, topography (slope), vegetation type, soil humidity, subsurface features (rockiness, stones), extreme temperatures and salinity. Extensive statistical tests revealed correlations and interaction between several of the factors, e.g. vegetation and landuse type, subsurface features and topography. The most important factor for electricity was landuse categories (area measures), relating to costs of construction (reinforcements, site access) and to operation (maintenance access). This is in fact consistent with the earlier results highlighting infrastructure density as a major factor, but in addition it addresses the costs incurred through other factors (slope, subsoil) when operating in specific terrain (forest, mountains). Most other factors, correlate with the normalized grid landuse-weighted parameter. Thus, this parameter was chosen as the

 $^{^{\}rm 2}$ yNormGrid, yLines.share.angular.sum, densly populated area.

primary variable, explaining by itself over 90% of the variance in Totex in robust regression (cf. Table 5-3 below).

yTransformer_power

5.05 Coming out as a strong complement to the first NormGrid parameter, the total transformer power is an evident indicator in the category for capacity provision. The total installed power is not identical to the NormGrid component of the same type, since it takes the physical measure (MW) independent of age and equipment standard, creating a large range of variety in the asset management impact. As other parameters, the consideration of joint ventures is made through a correction by the ownership data. This variable is frequently used in international benchmarking, it is stable and robust, corresponding to an easily observable capacity measure.

yLines.share_steel_angle_mesum

5.06 In addition to the environmental factors previously listed for application to NormGrid categories, the electricity power system has particular challenges related to infrastructure crossings, natural impediments and urban sprawl, forcing the routes to take longer paths. This interesting aspect comes out as highly explanatory, implemented as a weighted sum of circuit length and the share of angular towers. The intuition for the parameter, already present in E3GRID, is that angular towers are required whenever a transmission line needs to deviate from a straight route. As angular towers need to sustain higher (lateral) forces, they require more material and are thus more expensive. In addition, this parameter may also capture planning constraints, difficulty in getting wayleaves for the otherwise optimal route. Therefore, the value of weighted angular towers can be interpreted as a proxy parameter representing the cost impact of topography or high population and/or load density. However, statistical results prompted a further extension of the parameter to integrate the material choice in the towers. This aspect came out empirically already in E3GRID 2009 as an explicative factor for outliers; the low-cost grids had both a higher incidence of wooden, cable-stayed towers and a lower complexity in terms of angular towers. Additional information shows that population density and proximity to infrastructure influence the choice of tower type to higher, access-protected and remotely monitored installations. Thus, the final parameter was developed as the linelength weighted with both the share of angular towers and the share of steel towers. This parameter complements the first landusecontrolled parameter in that it also takes in topology concerns, influencing the reinforcement, as well as infrastructure and population.

5.2 Summary statistics

5.07 Summary statistics of the costs and cost drivers in the base model are shown in Table 5-2 below. (Note that range values cannot be provided for confidentiality reasons). Q1 denotes first quartile, Q3 third quartile and Q2 the median.

Table 5-2 Summary statistics of model variables (2013-2017, full sample, n = 81)

Variable	Mean	Q1	Q2 (median)	Q3
dTotex.cb.hicpog_plici	2.723E+08	6.312E+07	1.538E+08	3.039E+08
yNG_yArea	2.932E+08	8.695E+07	2.449E+08	3.390E+08
yTransformers_power	43,102	12,343	25,754	39,990
yLines.share_steel_angle_mesum	1,772	678	1,286	1,752

- 5.08 We see that the electricity TSOs in the sample vary in terms of size. The two largest electricity TSOs are approximately twice as large as the third biggest TSO. Also, we see that the mean values exceed the median values. This reflects that the size distributions have a relatively long right tail.
- To get an initial understanding also of the ability of these cost drivers to explain the variation in average costs together and individually, Table 5-3 below shows the adjusted R2 (the conventional measure of regression fit) of three ordinary regression models with 1, 2 and 3 cost drivers. We see that the adjusted R2 of a model with only **yNG_yArea** is 95%. Adding **yTransformer_power** as a cost driver brings us to an adjusted R2 of 97%. Finally, when we add also **yLines.share_steel_angle_mesum**, the adjusted R2 becomes 97.8%. No TSOs were identified as statistical outliers in the two and three-parameter regressions in this example, whereas two TSOs fell out as statistical outliers in the NormGrid-only model. The number of parameters (3) in the model is adequate also with respect to the number of observations in the sample for 2017 (17 TSO) according to the convention of 3(#inputs+#outputs), i.e. 3*4=12 here.

Table 5-3 Explanatory power (adjusted R2) for 1, 2 and 3-variable models, robust regressions, *n*=81.

Number of variables	mber of variables Cost driver(s)	
1	yNG_yArea	0.950
2	yNG_yArea + yTransformer_power	0.970
	yNG_yArea + yTransformer_power +	
3	yLines.share_steel_angle_mesum	0.978

Outliers

5.10 The analyses of the raw data as well as the analysis of a series of model specifications, i.e. models with alternative costs drivers, suggest that one of the 17 TSOs almost always is an extreme outlier. This TSO has therefore been permanently removed from the reference set. In addition, three others have been identified using the model specific outlier detection tests explained in section 4.21, making in all four TSOs frontier outliers.

Returns to scale

5.11 For all possible model specifications, we have also tested which of the returns to scale assumptions in the DEA model fit data the best: variable returns to scale (VRS), increasing returns to scale (IRS), decreasing returns to scale (DRS), or constant returns to scale (CRS). We have done so using F-tests based on a goodness-of-fit measure as explained in the Method chapter. The general finding is that the IRS assumption (see Figure 5-2 below) is the best assumption to invoke. This is supported also by parametric analyses for a logarithmic model, where the coefficients sum to less than one for the selected parameters.

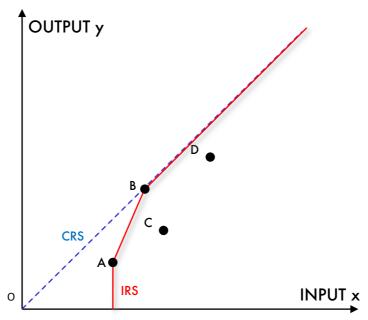


Figure 5-2 DEA frontier under increasing returns to scale (IRS).

5.12 The IRS assumption means that it can be a disadvantage to be a small TSO but not to be a large TSO. In Figure 5-2 the large TSO D is benchmarked against the most productive (CRS-efficient) TSO B, the somewhat smaller TSO C is gauged against the standard set by TSO B and A, whereas TSO A (smaller than B) forms a frontier unit for its scale class. This is also conceptually appealing. A TSO can be small due to the size of the country or by the service area it has to serve and there may be an element of fixed costs involved in the operation of any TSO. On the other hand, if a TSO is suffering from extra cost of being large, it is likely that a reorganization of the TSO to imitate a combination of smaller TSOs could improve cost efficiency.

5.3 Assumptions applied in runs

Exclusion of significant rehabilitation

5.13 Although informed in the data specification and at workshops, only very few TSOs used the reporting options for significant rehabilitations. Worse, of those reporting some TSOs reported proportions of their assets base under significant rehabilitation that do not correspond to any reasonable techno-economic policy. In order not to compromise the data quality, the PSG decided to exclude the significant rehabilitation from the benchmarking runs.

5.4 Efficiency scores

5.14 The efficiency scores are obtained using DEA on the final model described. The primary static result concerns the 2017 data.

Final model efficiencies

5.15 Summary statistics for the efficiency scores in the final TCB18 model are shown in Table 5-4 below. We see that the DEA model leads to mean efficiencies of 89.8%, i.e. the

model suggests that the electricity TSOs on average can save 10.2% in benchmarked comparable Totex.

Table 5-4 Efficiency scores in final model ELEC, static 2017

	Mean	Q1	Q2 (median)	Q3
Final DEA (2017)	0.898	0.795	0.991	1.000
Peers (non-outliers)	4			
Outliers	4			

- 5.16 In Table 5-4 we see all the quartiles of the efficiency distribution and we note that there is a longer left tail in the sense that the median is now to the right of the mean value. This is also illustrated in the Figure 5-3 below.
- 5.17 The full distribution of the efficiencies is shown in Figure 5-3. We note here the relatively large number of fully efficient TSOs. This is not surprising since we are using a model with three cost drivers on a small sample and with cautious (aggressive) outlier elimination instruments. Indeed, in the base model there are four DEA outliers as stated in art 5.10.

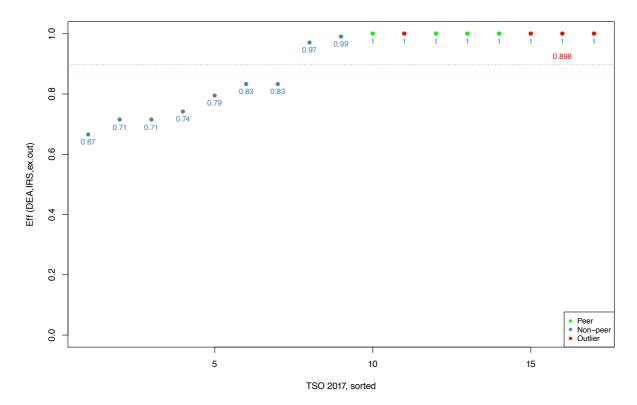


Figure 5-3 Distribution of scores 2017 in the final ELEC model.

5.5 Robustness analysis

- 5.18 The final model provides a cautious estimate of the cost efficiency in electricity transmission, in line with the E3GRID results in terms of level and distribution.
- 5.19 The revision of a preliminary model to incorporate line-weighted steel towers rather than the number of towers made the final model more comprehensive and less dependent on technology choices.
- 5.20 Overall, the model constitutes an improvement in the consideration of economic, environmental and infrastructure factors. Although a selection has been made among the derived environmental factors, the correlations among them render the specification robust.

Sensitivity for model parameters

- 5.21 The results have been tested for changes with respect to the following model parameters:
 - 1) Interest rate
 - 2) Normgrid weight calibration between Opex and Capex
 - 3) Normgrid weight for lines vs other assets
 - 4) Salary corrections for capitalized labor in investments
- 5.22 All analyses are relative to the impact of a parameter change, say q on the DEA score for the base case used in the final run, q_0 . For each TSO k, the impact of q is measured as:

$$E(k|q) / E(k|q_0)$$

5.23 The illustrations below concern the mean effects on the 2017 dataset, i.e. the final scores. A negative slope for the function above would imply that increasing the parameter q would lead to a decrease in mean score, the vertical axis gives an indication of the percentage change in score expected.

Sensitivity to interest rate

5.24 The results for the sensitivity to interest rate changes show a relatively flat and predictable shape. Lowering the interest rate to 1.8% (-40% of the 3% base rate) would on average increase the DEA score by 1.5% (proportionally, the maximum change is +11% units), likewise an increase to 4.5% (+50% on base rate) would on average decrease the DEA scores by 4.5% (maximum unit change: -12%). The outcomes are illustrated in Figure 5-4 below. The vertical axis denotes the change in average DEA scores relative to the average DEA scores calculated with interest rate 3%.

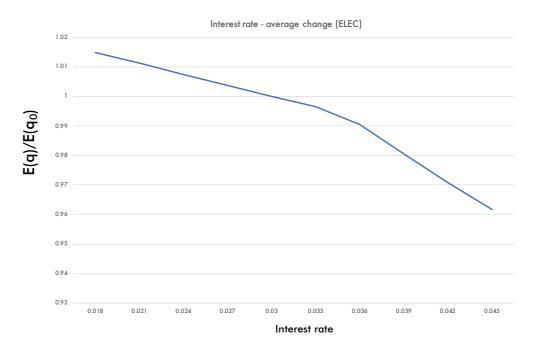


Figure 5-4 Sensivity to changes in real interest rate (proportional change in DEA score).

Sensitivity to NormGrid weights

5.25 Each TSO has thousands of assets of different types and dimension, each assigned a specific value in the Normgrid system. Given the large number of assets and their dispersion, the impact of a change to an individual weight is of course minimal. But even systematic changes to the balance between Opex and Capex weights and to specific asset groups (here: overhead lines) result in very small changes to the DEA scores, as seen in Figure 5-5 and Figure 5-6 below. The explanation for this stability is that the types of assets are relatively equally shared among the TSOs and the changes in absolute numbers hardly affect the relative ratios among the TSOs. The vertical axis denotes the change in average DEA scores relative to the average DEA scores calculated with the base values used in the NormGrid system (=1), multiplied with a factor ranging from 0.2 to 2.

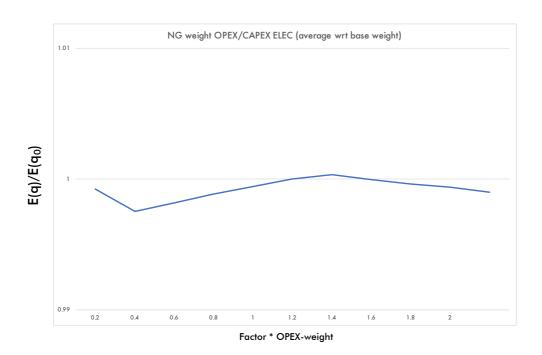


Figure 5-5 Sensitivity analysis wrt to NormGrid weights calibration Opex-Capex (change in DEA score).

Figure 5-6 Sensitivity analysis wrt to NormGrid weights for overhead lines (factor of change) vs change in DEA score.

Sensitivity to salary corrections for investments

In E2GAS (the CEER gas TSO benchmarking 2015/2016), a share of the investment stream was considered as local labor cost and subject to the same salary adjustment as in OPEX. In TCB18 this is not the case as the identification of the constructors in past investments is uncertain and the economic interpretation (closed markets) is in conflict with promoted best practice in other infrastructure areas. The sensitivity of the results with respect to this choice is illustrated in Figure 5-7 below. The average change is minimal, less than 1% for a 25% labor share, but the individual impact of course depends on the weight of investments in Totex and the salary correction factor compared. The maximum range of impact here in the interval (-9% to +3%) in percentage-units for the score confirms that even on an individual basis, the results are not primarily driven by country-specific labor cost differences.

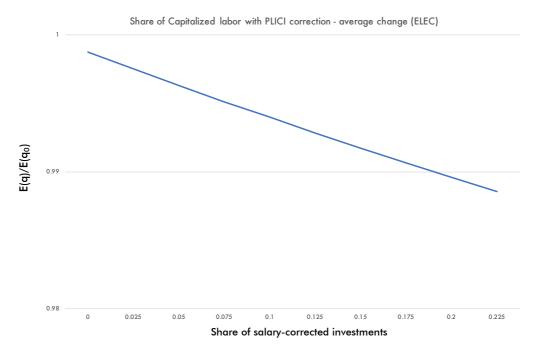


Figure 5-7 Sensitivity analysis for salary correction of capitalized labor in investments, DEA score.

5.27 The sensitivity analysis confirms that the results are robust to changes in the model parameters (interest rate, norm grid parameters) or model assumptions (capitalized labor in investments).

6. Quality provision

In this chapter, the results from a survey on indicators and data for service quality in transmission.

6.1 Survey

- 6.01 So far measures of output quality have not been widely used in TSO cost efficiency studies. Wherever measures of output quality have been considered and/or used, studies focused on measures for energy losses or reliability. Notably E3grid was no exception to that, although the energy not supplied asked for did not correlate very well to cost. Still, CEER remains open to add the aspect of quality to (future) benchmarks. For that, however, it is required to define the concept of quality, to find ways to measure it, and to be able to relate such measure(s) to benchmarked cost.
- 6.02 In order to get closer to answers, in October 2017 CEER initiated a survey among most TSOs participating in TCB18. The survey asked TSOs to suggest quality parameters that are of universal use, well defined, collectable, and verifiable with independent sources, and be as specific as possible regarding definition, interpretation, sourcing, availability, and verifiability.
- 6.03 CEER received responses to the survey from just two TSOs. To summarize, the first TSO (electricity) deems quality parameters in general as too susceptible to exogenous factors in order to include them in a European efficiency comparison. Their experience, as they say, shows that the link between costs or the individual effort to maintain a high asset quality and most quantifiable quality parameters like security of supply is rather weak or arbitrary. Therefore analyses of such relationships might be misleading. The second TSO (also electricity), however, pleas for taking quality into account.
- 6.04 To summarize, the response was too low in numbers and the outcome too diverse and not concrete enough to be conclusive. Nevertheless, at the second TCB18 workshop of April 2018 the subject was found to be important enough to reinvestigate and it was agreed to revisit the survey, this time with a questionnaire that gives stronger guidance to what CEER is looking for. The survey was launched in October 2018 with a (extended) deadline of January 2019. The survey aimed at further exploring the business knowhow at TSOs to investigate if quality of service provision could be defined meaningfully in terms of cost and cost efficiency. To that extent the survey focused on searching for concrete quality aspects and ways to measure these (parameters). CEER announced beforehand that the results of the survey were not meant to be used in the model of the current TCB18 benchmark. For the second survey CEER developed an Excel template to be filled in by TSOs and gave the following instructions in a separate guiding document.
- 6.05 First of all, CEER remarked in the guide that quality is not about *what* a TSO provides, but *how well* it is done. Therefore, CEER expects that a suggested quality aspect is of universal relevance. That is, if a quality aspect reflects the quality of a service that is not provided by all TSOs, the quality aspect may signal a benchmark scoping issue or something else rather than a quality issue.

6.06 Secondly, the quality aspects CEER is looking for:

- must be interpretable, i.e. a quality aspect that has not at least an intuitive relation to cost will be difficult to use for the purpose of benchmarking. So, interpretability is more or less about the story behind the quality aspect in terms of cost and cost efficiency.
- 2) must be measurable as a parameter. For example, if the quality aspects is reliability, a parameter may be the number of service disruptions. It is important to define such parameters well, i.e. concrete, precise, and unambiguously.
- 3) must have a relation to cost. Apart from a more global interpretability of the quality aspect, it helps the analysis of the survey to understand the TSO's opinion on how specific cost parameters correlate to cost and asset components. The survey asked TSO's to link suggested quality parameters to cost items in the financial reporting sheet of the TCB18 data collection.
- 4) must be collectable. To use a quality parameter to interpret a benchmark result or to shape the benchmark model, the value of the parameter must be based on objective data that are collectable and verifiable.
- 6.07 The response to the second survey was again low in numbers, diverse, and in most cases not very concrete. Two neighboring electricity TSOs submitted a response together. They mention security of supply (with measures like SAIDI or ASIDI) and remark that CEER already collects information about these parameters and should therefore have no problems in integrating this in TCB18. The TSOs further mention provision of cross border capacity, to be measured by a combination of interconnectedness and availability of cross border interconnections to the market. Also, the TSOs suggest that the level of integration of renewable energy is a quality aspect, without suggesting a clear metric for it. It continues by suggesting that the level of personal accidents in construction works is also a sign of quality. It can be measured by the loss time injury frequency. Finally, the TSOs mention the environmental impact of a TSO as a quality aspect. For that sustainability reports could be used to measure it. Finally, a third TSO warns that relation to cost of quality aspects is often difficult to measure as many complexity factors play a role as well.

6.2 Analysis

- 6.08 It seems clear that the reliability of transportation of energy (security of supply; measured by interruptions, energy not supplied, etc.), or actually the absence of it, appeals to what the users of the grid eminently experience as quality delivered by TSOs. The aspect has universal relevance. Given a metric for reliability that is consistently defined for all TSOs, sampled objectively, and for which the result of that is publicly available, its relation with cost could be tested for in a cost driver analysis. Practice, however, is unruly. Studies by CEER show that in many countries there are systems in place measuring reliability, but there is a lack of commonly defined metrics and measurements at TSO level, which limits the use of these in a cost efficiency benchmark substantially. So, unlike two TSOs suggested in the second survey mentioned in the above, it is not at all straightforward to apply the CEER studies in TCB18 or later benchmarks.
- 6.09 Still, CEER remains open to practical suggestions to solve these obstacles. It must be said, however, that the proper inclusion of a metric for reliability in a benchmark like TCB18 will probably require a substantial effort to come to a commonly defined and

well measured metric on a pan-European scale and also some years after that to develop a reliable time series of systematically sampled data. The alternative would be to ask TSOs for their own recordings of reliability, though we should keep in mind that this was tried in E3grid (energy not supplied) and that several TSOs had difficulties to submit reliable data for it. Insofar data was available, a relationship with cost could not be confirmed statistically, although it is difficult to say whether that had to do with the data quality or with a true lack of relationship. In that respect, we also took notice of a TSO mentioning that "... the link between costs or the individual effort to maintain a high asset quality and most quantifiable quality parameters like security of supply is rather weak or arbitrary. Therefore analyses of such relationships might be misleading."

- 6.10 Also, like with modelling environmental conditions in TCB18, CEER desires to base the result of TCB18 and future benchmarks on as objective data as possible. In this case that means not asking TSOs for their data on reliability, but collecting it from exogenous, independent sources. Hence, CEER believes the alternative approach of asking TSOs for their own data is not attractive, not in TCB18 and not in the future.
- 6.11 Regarding other suggestions made, they seem less suitable to see these as quality aspects. Some suggestions done are more about what a TSO does, not how well it is done. Other suggestions lack sufficient universal relevance, lack an obvious and practical metric, or are seen as much less relevant to analyse and implement than something like reliability.

6.3 Conclusions

6.12 To conclude, CEER remains open to defining and implementing quality aspects, but sees on the basis of the responses to the surveys and available material currently no way to do this properly. CEER calls upon European independent institutions to set a common standard for measuring reliability and publish the results regularly and openly. As soon as that has been done, CEER will be able to revisit the theme of explicitly addressing quality in cost efficiency benchmarking.

Summary and discussion

7.1 Main findings

- 7.01 The TCB18 project has established a comprehensive platform for cost efficiency assessments in electricity transmission through a set of detailed data specifications for assets, activities, costs and environmental conditions. The specifications have been reviewed in several rounds by NRAs, TSOs and external experts to be as relevant and clear as possible. A new efficient organization of the data collection and validation has been implemented, managed by the PSG, more precise by the NRAs for cost and asset data and managed by consultants for the collection of environmental parameters mapped to the service areas of the operators. This process is forming a stable and powerful basis for periodic performance assessments and the systematic collection of data to gauge the development of the sector.
- 7.02 The collected data have been processed in order to derive a benchmarking model capturing the three main service dimensions (grid provision, capacity provision and customer service) considering heterogenous economic and environmental conditions and technical specifications. Using the normalized grid metric, the multiple assets of the power system have been included to form a Totex-relevant proxy for grid size, more predictive to cost than using conventional measures such as line length or energy transported. Using statistical methods to derive the most informative models, a final model with three outputs and one input, Totex, has been developed.
- 7.03 The cost efficiency results from the model present a mean cost efficiency for 2017 corresponding to 90% of relevant Totex. This result indicates an efficiency improvement potential that is on average about 10%. The potential appears to be a very conservative estimate of the true prospect for performance improvements in the sector, here excluding all effects of capacity utilization and energy consumption that could be added to the picture. However, the results do indicate examples of best practice to be analyzed and emulated, as well as providing information to regulators and operators about the sources of inefficient investments and operations.

7.2 Plausibility of the results

- 7.04 One way of looking at the results is to ask oneself if it is reasonable to believe that individual scores can come out as low as 80%, 70%, 60%, or even lower. The answer to that question is in our view YES for two important reasons. First of all, the TCB18 project itself has been performed with great care, i.e. extensively validating data, often making cautious assumptions when modelling, and verifying the results to the extent that the PSG cannot think of any reason why these could not be trusted. Often these steps were inspired by comments from TSOs, leading to the formulation and testing of additional hypothesis to rule out errors as much as possible.
- 7.05 Another interesting point of view is founded on the outcome of other benchmarking studies focusing on infrastructure sectors. Notably in gas and electricity many studies exist with similar outcomes as for TCB18. But also looking at a typical project in rail infrastructure efficiency made for the European Commission (Steer Davis Gleaves, 2015), one can see a considerable spread in raw cost efficiency, not explained by size, and in the DEA scores (that are particularly "soft" using a 2-input, 3-output

model). Indeed, there are large differences in the way heavy infrastructure is planned, procured and operated - even if the operators use tendering and are incentivized (nationally).

- 7.06 We can even take this argument further, by looking at a non-infrastructure sector, like banking. To measure their efficiency banks commonly use the cost-to-income ratio. Seen as a unit cost efficiency measure, which is reasonable given that often banks focus on cost reductions to improve their ratio, we see banks worldwide having very low efficiencies. Even on a European Union scale, we see numbers as low as 50% in 2014, see https://m.theglobaleconomy.com/rankings/bank cost to income.
- 7.07 Having observed this, it is important to realize that individually there can be many good reasons for very low or very high efficiency scores and that it is not the purpose of TCB18 to judge about that. With TCB18 a best practice frontier has been developed in a pan-European context, based on verifiable observations while maintaining a neutral position towards national circumstances.

7.3 Comparison with E3GRID

- 7.08 The earlier E3GRID model has a similar base structure using a grid asset proxy (NormGrid) and a routing complexity output linked to the line length and the angular towers (cf. art 5.06). However, the TCB18 approach is more advanced than E3GRID in three aspects:
 - 1) GIS-level integration of exogenous environmental factors. Whereas E3GRID operated with a greenfield-approach for grid construction costs, TCB18 incorporates the landuse factors for the service area directly at a very high level of detail, without problems related to self-reporting and data validation access.
 - 2) No population density proxy. In E3GRID, in lack of good data for landuse a simple area indicator for dense urban area was used as a separate output variable. The inclusion of non-operation related outputs forced the application of weight restrictions in the model, which increased calculation and interpretation complexity. In TCB18, the landuse factors are exhaustive and multiplicative, rendering such application unnecessary.
 - 3) Capacity output parameter. In E3GRID that capacity dimension was limited to the consideration in the NormGrid. However, this is impacted by the age of assets (older transformers have little impact) and the focus is on the capex-impact (cost function for transformers, relative weights between transformers and other assets). In TCB18, the capacity offered to the system, irrespective of the age and configuration of the assets, is included as a separate output.
- 7.09 The size of the models and the number of participating TSOs in TCB18 and E3GRID also explain part of the difference in the results (E3GRID 2012: 21 TSOs, mean efficiency 86% and 8 peers). However, both the distribution and level of the results are very similar to those of E3GRID.

7.4 Limitations

7.10 Although state-of-the-art statistical techniques have been applied to determine the optimal combination of environmental factors for the final model, some conditions might apply to an individual or small group of operators passing undetected in the model specification. In the case the combined effects are significant, the systematic two-

stage outlier detection in DEA would identify and remove the data. However, there might be cases of impact without being sufficient for outlier classification that merit the attention of the NRA in interpreting the results from the study and their potential use in informing regulatory decisions.

7.5 Future plans for benchmarking

7.11 Regulatory benchmarking has reached a certain maturity through this process and model development, signaling both procedural and numerical robustness. Drawing on the work, the definitions and data standards as well as the model, CEER can readily plan for a repeated regular benchmarking at a considerably lower cost in time and resources, to the benefit of all involved. Although the current model brings improvements in particular in environmental factors, the inflation and salary corrections and the NormGrid definitions, the relative symmetry with the earlier model from E3GRID can be seen as a confirmation of the type of parameters and approaches chosen, leading to stable and predictable results. In this manner, the future work can be directed towards further refinement of the activity scope and the interpretation of the results, rather than on the model development.

8. References

Agrell, P. J. and P. Bogetoft (2007) *Development of benchmarking models for German electricity and gas distribution*, Final report 2007-01-01, Bundesnetzagentur (BNetzA), SUMICSID AB.

https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/Netzentgelte/Gas/Effizienzvergleich%20Verteilernetzbetreiber/GA Sumicsid Effizienzvergleich.pdf? blob=publicationFile&v=3

Agrell, P. J. and P. Bogetoft (2009b) *International Benchmarking of Electricity Transmission System Operators*. Project e³GRID. SUMICSID AB. http://e3grid.sumicsid.com/pub/2009-03-09 e3grid final report open main.pdf

Agrell, P. J. and P. Bogetoft (2014), International Benchmarking of Electricity Transmission System Operators *Proceedings of European Energy Market Conference EEM14*, IEEE Proceedings, pp. 1-5 doi: 10.1109/EEM.2014.6861311

Agrell, P. J., P. Bogetoft, H. Beaussant, J. Talarmin (2014) *Benchmarking European Gas Transmission System Operators: A Feasibility Study.* Project PE2GAS. SUMICSID. Report for CEER.

https://www.researchgate.net/publication/272094391_Benchmarking_European_Gas_ Transmission_System_Operators_A_Feasibility_Study

Agrell, P. J., P. Bogetoft, C. Riechmann, A. Rodgarkia-Dara, C. Zimmer (2013) *e³GRID* 2012 – European TSO Benchmarking Study. Project e³GRID 2012. SUMICSID, Consentec and Frontier Economics. Report for CEER.

https://www.researchgate.net/publication/265592571_E3GRID2012_European_TSO_Benchmarking_Study

Agrell, P.J., P. Bogetoft, and J. Tind (2005), DEA and Dynamic Yardstick Competition in Scandinavian Electricity Distribution, *Journal of Productivity Analysis*, 23, 173–201.

Agrell, P. J., P. Bogetoft, U. Trinker (2016) *Benchmarking European Gas Transmission System Operators*. Project E2GAS. SUMICSID and Swiss Economics. Report for CEER. https://www.ceer.eu/documents/104400/-/-/f919650e-0f9b-fb96-ebf8-47cac308667e

Agrell, P. J., and Niknazar, P. (2014). Structural and behavioral robustness in applied best-practice regulation. *Socio-Economic Planning Sciences*, 48(1), 89-103.

Aivazian V. A., J. L. Callen, M. W. L. Chan and D. C. Mountain (1987), Economies of Scale Versus Technological Change in the Natural Gas Transmission Industry, *The Review of Economics and Statistics*, 69(3), pp. 556-561.

Banker, R.D. (1996), Hypothesis Test Using Data Envelopment Analysis, *Journal of Productivity Analysis*, 7, pp. 139-159.

Bogetoft, P. (1997), DEA-Based Yardstick Competition: The Optimality of Best Practice Regulation, *Annals of Operations Research*, 73, pp. 277-298, 1997.

Banker, R.D. (1996), Hypothesis Test Using Data Envelopment Analysis, *Journal of Productivity Analysis*, 7, pp. 139-159.

Callen J. L. (1978) Production, Efficiency, and Welfare in the Natural Gas Transmission Industry, *The American Economic Review*, 68, pp. 311-323.

Carrington R., T. Coelli and E. Groom (2002) International Benchmarking for Monopoly Price Regulation: The Case of Australian Gas Distribution, *Journal of Regulation Economics*, 21:2, pp. 191-216.

Gordon, D. V., K. Gunsch and C. V. Pawluk (2003) A natural monopoly in natural gas transmission, *Energy Economics*, 25, pp. 473-485.

Granderson G. and C. Linvill (1996) The Impact of Regulation on Productivity Growth: An Application to the Transmission Sector of the Interstate Natural Gas Industry, *Journal of Regulation Economics*, 10, pp. 291-306.

Granderson, G. (2000) Regulation, Open-Access Transportation, and Productive Efficiency. *Review of Industrial Organization*, 16, pp. 251-266.

Lawrence, D., Kain, J., & Coelli, T. (2011). *Regulation of Suppliers of Gas Pipeline Services—Gas Sector Productivity*. Report for Commerce Commission, Economic Insights.

http://www.economicinsights.com.au/reports/Economic_Insights_NZCC_Gas_TFP_Report_10Feb2011.pdf

Jamasb, T., Newbery, D., Pollitt, M., & Triebs, T. (2007) *International benchmarking and regulation of European gas transmission utilities.* Report prepared for the Council of European Energy Regulators (CEER). http://portal.e-control.at/portal/page/portal/EER HOME/EER PUBLICATIONS/CEER PAPERS/Gas/2006/ERGEG Cost benchmark final tcm7-107140.pdf

Jamasb, T., Pollitt, M., & Triebs, T. (2008) Productivity and efficiency of US gas transmission companies: A European regulatory perspective. *Energy Policy*, 36(9), 3398-3412.

MacAvoy, P. W. and R. Noll (1973) Relative Prices on Regulated Transactions of the Natural Gas Pipelines, *The Bell Journal of Economics and Management Science*, 4,(1), pp. 212-234.

Meyrick (2004) Comparative Benchmarking of Gas Networks in Australia and New Zealand, Report prepared for Commerce Commission, Wellington

Nieswand, M., Cullmann, A., & Neumann, A. (2010). Overcoming data limitations in Nonparametric Benchmarking: Applying PCA-DEA to natural gas transmission. *Review of Network Economics*, 9(2).

Sickles, R. C. and M. L. Streitwieser (1992) Technical Inefficiency and Productive Decline in the U.S. Interstate Natural Gas Pipeline Industry under the Natural Gas Policy Act, *Journal of Productivity Analysis*, 3, pp. 119-133.

Sickles R. C. and M. L. Streitwieser (1998) An Analysis of Technology, Productivity, and Regulatory Distortion in the Interstate Natural Gas Transmission Industry: 1977-1985, *Journal of Applied Econometrics*, 13, pp. 377-395.

Steer Davis Gleave (2015). Study on the Cost and Contribution of the Rail Sector. *Final Report prepared for the European Commission*.

https://ec.europa.eu/transport/sites/transport/files/modes/rail/studies/doc/2015-09-study-on-the-cost-and-contribution-of-the-rail-sector.pdf

Appendix

A. Electricity asset reporting guide, 2018-03-08

B. Financial reporting guide, 2018-03-08

C. Special conditions reporting guide, 2018-09-13

D. Method to treat upgrading, refurbishing and rehabilitation of assets in TCB18

E. Modelling opening balances and missing initial investments, 2018-01-11

F. Norm Grid Development Technical Report, 2019-02-27 V1.3

SUMICSID SPRL (GROUP)

Rue Maurice Lietart 56 B-1150 Brussels, BELGIUM belgium @ sumicsid.com

Fax: +32 27 06 53 58

Tel: +32 26 75 15 23

http://www.sumicsid.com

Cours Saint-Michel 30a, box F (5th floor) 1040 Brussels, BELGIUM Tel: +32 (0)2 788 73 30 Fax: +32 (0)2 788 73 50

www.ceer.eu